The solution of a linear program. The example below solves the following linear program:
Two variables, x
and y
:
0 ≤ x ≤ 10
0 ≤ y ≤ 5
Constraints:
0 ≤ 2 * x + 5 * y ≤ 10
0 ≤ 10 * x + 3 * y ≤ 20
Objective:
Maximize x + y
var engine = LinearOptimizationService.createEngine(); // Add variables, constraints and define the objective with addVariable(), addConstraint(), etc. // Add two variables, 0 <= x <= 10 and 0 <= y <= 5 engine.addVariable('x', 0, 10); engine.addVariable('y', 0, 5); // Create the constraint: 0 <= 2 * x + 5 * y <= 10 var constraint = engine.addConstraint(0, 10); constraint.setCoefficient('x', 2); constraint.setCoefficient('y', 5); // Create the constraint: 0 <= 10 * x + 3 * y <= 20 var constraint = engine.addConstraint(0, 20); constraint.setCoefficient('x', 10); constraint.setCoefficient('y', 3); // Set the objective to be x + y engine.setObjectiveCoefficient('x', 1); engine.setObjectiveCoefficient('y', 1); // Engine should maximize the objective engine.setMaximization(); // Solve the linear program var solution = engine.solve(); if (!solution.isValid()) { Logger.log('No solution ' + solution.getStatus()); } else { Logger.log('Objective value: ' + solution.getObjectiveValue()); Logger.log('Value of x: ' + solution.getVariableValue('x')); Logger.log('Value of y: ' + solution.getVariableValue('y')); }
Methods
Method | Return type | Brief description |
---|---|---|
getObjectiveValue() | Number | Gets the value of the objective function in the current solution. |
getStatus() | Status | Gets the status of the solution. |
getVariableValue(variableName) | Number | Gets the value of a variable in the solution created by the last call to LinearOptimizationEngine.solve() . |
isValid() | Boolean | Determines whether the solution is either feasible or optimal. |
Detailed documentation
getObjectiveValue()
Gets the value of the objective function in the current solution.
var engine = LinearOptimizationService.createEngine(); // Add variables, constraints and define the objective with addVariable(), addConstraint(), etc engine.addVariable('x', 0, 10); // ... // Solve the linear program var solution = engine.solve(); Logger.log('ObjectiveValue: ' + solution.getObjectiveValue());
Return
Number
— the value of the objective function
getStatus()
Gets the status of the solution. Before solving a problem, the status will be NOT_SOLVED
.
var engine = LinearOptimizationService.createEngine(); // Add variables, constraints and define the objective with addVariable(), addConstraint(), etc engine.addVariable('x', 0, 10); // ... // Solve the linear program var solution = engine.solve(); if (solution.getStatus() != LinearOptimizationService.Status.FEASIBLE && solution.getStatus() != LinearOptimizationService.Status.OPTIMAL) { throw 'No solution ' + status; } Logger.log('Status: ' + solution.getStatus());
Return
Status
— the status of the solver
getVariableValue(variableName)
Gets the value of a variable in the solution created by the last call to LinearOptimizationEngine.solve()
.
var engine = LinearOptimizationService.createEngine(); // Add variables, constraints and define the objective with addVariable(), addConstraint(), etc engine.addVariable('x', 0, 10); // ... // Solve the linear program var solution = engine.solve(); Logger.log('Value of x: ' + solution.getVariableValue('x'));
Parameters
Name | Type | Description |
---|---|---|
variableName | String | name of the variable |
Return
Number
— the value of the variable in the solution
isValid()
Determines whether the solution is either feasible or optimal.
var engine = LinearOptimizationService.createEngine(); // Add variables, constraints and define the objective with addVariable(), addConstraint(), etc engine.addVariable('x', 0, 10); // ... // Solve the linear program var solution = engine.solve(); if (!solution.isValid()) { throw 'No solution ' + status; }
Return
Boolean
— true
if the solution is valid (Status.FEASIBLE
or
Status.OPTIMAL
); false
if not