Solusi dari program linear. Contoh di bawah ini menyelesaikan program linear berikut:
Dua variabel, x
dan y
:
0 ≤ x ≤ 10
0 ≤ y ≤ 5
Batasan:
0 ≤ 2 * x + 5 * y ≤ 10
0 ≤ 10 * x + 3 * y ≤ 20
Objektif:
Perbesar x + y
var engine = LinearOptimizationService.createEngine(); // Add variables, constraints and define the objective with addVariable(), addConstraint(), etc. // Add two variables, 0 <= x <= 10 and 0 <= y <= 5 engine.addVariable('x', 0, 10); engine.addVariable('y', 0, 5); // Create the constraint: 0 <= 2 * x + 5 * y <= 10 var constraint = engine.addConstraint(0, 10); constraint.setCoefficient('x', 2); constraint.setCoefficient('y', 5); // Create the constraint: 0 <= 10 * x + 3 * y <= 20 var constraint = engine.addConstraint(0, 20); constraint.setCoefficient('x', 10); constraint.setCoefficient('y', 3); // Set the objective to be x + y engine.setObjectiveCoefficient('x', 1); engine.setObjectiveCoefficient('y', 1); // Engine should maximize the objective engine.setMaximization(); // Solve the linear program var solution = engine.solve(); if (!solution.isValid()) { Logger.log('No solution ' + solution.getStatus()); } else { Logger.log('Objective value: ' + solution.getObjectiveValue()); Logger.log('Value of x: ' + solution.getVariableValue('x')); Logger.log('Value of y: ' + solution.getVariableValue('y')); }
Metode
Metode | Jenis hasil yang ditampilkan | Deskripsi singkat |
---|---|---|
getObjectiveValue() | Number | Mendapatkan nilai fungsi objektif dalam solusi saat ini. |
getStatus() | Status | Mendapatkan status solusi. |
getVariableValue(variableName) | Number | Mendapatkan nilai variabel dalam solusi yang dibuat oleh panggilan terakhir ke LinearOptimizationEngine.solve() . |
isValid() | Boolean | Menentukan apakah solusi tersebut layak atau optimal. |
Dokumentasi mendetail
getObjectiveValue()
Mendapatkan nilai fungsi objektif dalam solusi saat ini.
var engine = LinearOptimizationService.createEngine(); // Add variables, constraints and define the objective with addVariable(), addConstraint(), etc engine.addVariable('x', 0, 10); // ... // Solve the linear program var solution = engine.solve(); Logger.log('ObjectiveValue: ' + solution.getObjectiveValue());
Pulang pergi
Number
— nilai fungsi objektif
getStatus()
Mendapatkan status solusi. Sebelum memecahkan masalah, statusnya akan menjadi NOT_SOLVED
.
var engine = LinearOptimizationService.createEngine(); // Add variables, constraints and define the objective with addVariable(), addConstraint(), etc engine.addVariable('x', 0, 10); // ... // Solve the linear program var solution = engine.solve(); if (solution.getStatus() != LinearOptimizationService.Status.FEASIBLE && solution.getStatus() != LinearOptimizationService.Status.OPTIMAL) { throw 'No solution ' + status; } Logger.log('Status: ' + solution.getStatus());
Pulang pergi
Status
— status pemecah
getVariableValue(variableName)
Mendapatkan nilai variabel dalam solusi yang dibuat oleh panggilan terakhir ke LinearOptimizationEngine.solve()
.
var engine = LinearOptimizationService.createEngine(); // Add variables, constraints and define the objective with addVariable(), addConstraint(), etc engine.addVariable('x', 0, 10); // ... // Solve the linear program var solution = engine.solve(); Logger.log('Value of x: ' + solution.getVariableValue('x'));
Parameter
Nama | Jenis | Deskripsi |
---|---|---|
variableName | String | nama variabel |
Pulang pergi
Number
— nilai variabel dalam solusi
isValid()
Menentukan apakah solusi tersebut layak atau optimal.
var engine = LinearOptimizationService.createEngine(); // Add variables, constraints and define the objective with addVariable(), addConstraint(), etc engine.addVariable('x', 0, 10); // ... // Solve the linear program var solution = engine.solve(); if (!solution.isValid()) { throw 'No solution ' + status; }
Pulang pergi
Boolean
— true
jika solusinya valid (Status.FEASIBLE
atau
Status.OPTIMAL
); false
jika tidak