سرویس BigQuery

سرویس BigQuery به شما امکان می دهد از Google BigQuery API در Apps Script استفاده کنید. این API به کاربران امکان مدیریت پروژه های BigQuery، آپلود داده های جدید و اجرای پرس و جو را می دهد.

مرجع

برای اطلاعات دقیق در مورد این سرویس، به مستندات مرجع برای BigQuery API مراجعه کنید. مانند همه سرویس‌های پیشرفته در Apps Script، سرویس BigQuery از همان اشیا، روش‌ها و پارامترهای API عمومی استفاده می‌کند. برای اطلاعات بیشتر، نحوه تعیین امضای روش را ببینید.

برای گزارش مشکلات و یافتن پشتیبانی دیگر، راهنمای پشتیبانی Google Cloud را ببینید.

کد نمونه

کد نمونه زیر از نسخه 2 API استفاده می کند.

پرس و جو را اجرا کنید

این نمونه فهرستی از عبارات روزانه برتر جستجوی Google را جستجو می کند.

advanced/bigquery.gs
/**
 * Runs a BigQuery query and logs the results in a spreadsheet.
 */
function runQuery() {
  // Replace this value with the project ID listed in the Google
  // Cloud Platform project.
  const projectId = 'XXXXXXXX';

  const request = {
    // TODO (developer) - Replace query with yours
    query: 'SELECT refresh_date AS Day, term AS Top_Term, rank ' +
      'FROM `bigquery-public-data.google_trends.top_terms` ' +
      'WHERE rank = 1 ' +
      'AND refresh_date >= DATE_SUB(CURRENT_DATE(), INTERVAL 2 WEEK) ' +
      'GROUP BY Day, Top_Term, rank ' +
      'ORDER BY Day DESC;',
    useLegacySql: false
  };
  let queryResults = BigQuery.Jobs.query(request, projectId);
  const jobId = queryResults.jobReference.jobId;

  // Check on status of the Query Job.
  let sleepTimeMs = 500;
  while (!queryResults.jobComplete) {
    Utilities.sleep(sleepTimeMs);
    sleepTimeMs *= 2;
    queryResults = BigQuery.Jobs.getQueryResults(projectId, jobId);
  }

  // Get all the rows of results.
  let rows = queryResults.rows;
  while (queryResults.pageToken) {
    queryResults = BigQuery.Jobs.getQueryResults(projectId, jobId, {
      pageToken: queryResults.pageToken
    });
    rows = rows.concat(queryResults.rows);
  }

  if (!rows) {
    console.log('No rows returned.');
    return;
  }
  const spreadsheet = SpreadsheetApp.create('BigQuery Results');
  const sheet = spreadsheet.getActiveSheet();

  // Append the headers.
  const headers = queryResults.schema.fields.map(function(field) {
    return field.name;
  });
  sheet.appendRow(headers);

  // Append the results.
  const data = new Array(rows.length);
  for (let i = 0; i < rows.length; i++) {
    const cols = rows[i].f;
    data[i] = new Array(cols.length);
    for (let j = 0; j < cols.length; j++) {
      data[i][j] = cols[j].v;
    }
  }
  sheet.getRange(2, 1, rows.length, headers.length).setValues(data);

  console.log('Results spreadsheet created: %s', spreadsheet.getUrl());
}

داده های CSV را بارگیری کنید

این نمونه یک جدول جدید ایجاد می کند و یک فایل CSV از Google Drive در آن بارگذاری می کند.

advanced/bigquery.gs
/**
 * Loads a CSV into BigQuery
 */
function loadCsv() {
  // Replace this value with the project ID listed in the Google
  // Cloud Platform project.
  const projectId = 'XXXXXXXX';
  // Create a dataset in the BigQuery UI (https://bigquery.cloud.google.com)
  // and enter its ID below.
  const datasetId = 'YYYYYYYY';
  // Sample CSV file of Google Trends data conforming to the schema below.
  // https://docs.google.com/file/d/0BwzA1Orbvy5WMXFLaTR1Z1p2UDg/edit
  const csvFileId = '0BwzA1Orbvy5WMXFLaTR1Z1p2UDg';

  // Create the table.
  const tableId = 'pets_' + new Date().getTime();
  let table = {
    tableReference: {
      projectId: projectId,
      datasetId: datasetId,
      tableId: tableId
    },
    schema: {
      fields: [
        {name: 'week', type: 'STRING'},
        {name: 'cat', type: 'INTEGER'},
        {name: 'dog', type: 'INTEGER'},
        {name: 'bird', type: 'INTEGER'}
      ]
    }
  };
  try {
    table = BigQuery.Tables.insert(table, projectId, datasetId);
    console.log('Table created: %s', table.id);
  } catch (err) {
    console.log('unable to create table');
  }
  // Load CSV data from Drive and convert to the correct format for upload.
  const file = DriveApp.getFileById(csvFileId);
  const data = file.getBlob().setContentType('application/octet-stream');

  // Create the data upload job.
  const job = {
    configuration: {
      load: {
        destinationTable: {
          projectId: projectId,
          datasetId: datasetId,
          tableId: tableId
        },
        skipLeadingRows: 1
      }
    }
  };
  try {
    const jobResult = BigQuery.Jobs.insert(job, projectId, data);
    console.log(`Load job started. Status: ${jobResult.status.state}`);
  } catch (err) {
    console.log('unable to insert job');
  }
}