The linear optimization service, used to model and solve linear and mixed-integer linear programs. The example below solves the following linear program:
Two variables, x
and y
:
0 ≤ x ≤ 10
0 ≤ y ≤ 5
Constraints:
0 ≤ 2 * x + 5 * y ≤ 10
0 ≤ 10 * x + 3 * y ≤ 20
Objective:
Maximize x + y
const engine = LinearOptimizationService.createEngine(); // Add variables, constraints and define the objective using addVariable(), // addConstraint(), etc. Add two variables, 0 <= x <= 10 and 0 <= y <= 5 engine.addVariable('x', 0, 10); engine.addVariable('y', 0, 5); // Create the constraint: 0 <= 2 * x + 5 * y <= 10 let constraint = engine.addConstraint(0, 10); constraint.setCoefficient('x', 2); constraint.setCoefficient('y', 5); // Create the constraint: 0 <= 10 * x + 3 * y <= 20 constraint = engine.addConstraint(0, 20); constraint.setCoefficient('x', 10); constraint.setCoefficient('y', 3); // Set the objective to be x + y engine.setObjectiveCoefficient('x', 1); engine.setObjectiveCoefficient('y', 1); // Engine should maximize the objective. engine.setMaximization(); // Solve the linear program const solution = engine.solve(); if (!solution.isValid()) { Logger.log(`No solution ${solution.getStatus()}`); } else { Logger.log(`Value of x: ${solution.getVariableValue('x')}`); Logger.log(`Value of y: ${solution.getVariableValue('y')}`); }
Properties
Property | Type | Description |
---|---|---|
Status | Status | Status of the solver. |
Variable | Variable | Type of variables created by the solver. |
Methods
Method | Return type | Brief description |
---|---|---|
create | Linear | Creates an engine to to solve linear programs (potentially mixed-integer programs). |
Detailed documentation
createEngine()
Creates an engine to to solve linear programs (potentially mixed-integer programs).
// Creates a linear optimization engine. const engine = LinearOptimizationService.createEngine(); engine.addVariable('x', 0, 10); // ...
Return
Linear
— a linear optimization engine