As recomendações podem melhorar suas campanhas de algumas maneiras:
- Apresentar recursos novos e relevantes
- Aproveite melhor seu orçamento com anúncios, palavras-chave e lances aprimorados
- Aumente a performance geral e a eficiência das suas campanhas
Para aumentar as pontuações de otimização, use RecommendationService
para recuperar recomendações e, em seguida, aplique ou dispense-as conforme necessário.
Pontuação de otimização
A pontuação de otimização é uma estimativa da performance da sua conta do Google Ads e está disponível nos níveis de Customer
e Campaign
.
O
Customer.optimization_score_weight
está disponível apenas para contas que não são de administrador e é usado para calcular a pontuação de otimização
geral de várias contas. Recuperar a pontuação de otimização e
o peso da pontuação de otimização das contas e multiplicá-las
(Customer.optimization_score * Customer.optimization_score_weight
) para calcular
a pontuação de otimização geral.
Existem métricas relacionadas à otimização disponíveis para os relatórios customer
e campaign
:
- O
metrics.optimization_score_url
oferece um link direto para a conta para visualizar informações sobre as recomendações relacionadas na IU do Google Ads. - O
metrics.optimization_score_uplift
informa quanto a pontuação de otimização aumentaria se todas as recomendações relacionadas fossem aplicadas.
O valor de optimization_score_uplift
é apenas uma aproximação. Isso ocorre porque o
aumento de otimização é calculado individualmente para cada recomendação,
e o efeito combinado da implementação de várias recomendações pode não ser uma
soma precisa de cada uma isoladamente.
Tipos de recomendação
Vídeo: lidar com tipos não compatíveis
A API Google Ads é totalmente compatível com os seguintes tipos de recomendação:
RecommendationType (link em inglês) | Descrição |
---|---|
CAMPAIGN_BUDGET |
Corrigir campanhas limitadas pelo orçamento |
KEYWORD |
Adicionar novas palavras-chave |
TEXT_AD |
Adicionar sugestões de anúncios |
TARGET_CPA_OPT_IN |
Lance com CPA desejado |
MAXIMIZE_CONVERSIONS_OPT_IN |
Lance com a estratégia "Maximizar conversões" |
ENHANCED_CPC_OPT_IN |
Lance com CPC otimizado |
SEARCH_PARTNERS_OPT_IN |
Expandir o alcance com parceiros de pesquisa do Google |
MAXIMIZE_CLICKS_OPT_IN |
Lance com estratégia "Maximizar cliques" |
OPTIMIZE_AD_ROTATION |
Use rotações de anúncios otimizadas |
CALLOUT_EXTENSION |
Adicionar extensões de frase de destaque à campanha |
SITELINK_EXTENSION |
Adicionar extensões de sitelink à campanha |
CALL_EXTENSION |
Adicionar extensões de chamada à campanha |
KEYWORD_MATCH_TYPE (deprecated) |
Alterar os tipos de correspondência de palavra-chave |
MOVE_UNUSED_BUDGET |
Mover os itens não utilizados para os orçamentos restritos |
TARGET_ROAS_OPT_IN |
Lance com ROAS desejado |
FORECASTING_CAMPAIGN_BUDGET |
Corrija campanhas que provavelmente serão limitadas pelo orçamento no futuro |
RESPONSIVE_SEARCH_AD |
Adicionar novo anúncio responsivo de pesquisa |
MARGINAL_ROI_CAMPAIGN_BUDGET |
Ajuste o orçamento da campanha para aumentar o ROI |
USE_BROAD_MATCH_KEYWORD |
Use a correspondência ampla para campanhas com base em conversões que usam lances automáticos |
RESPONSIVE_SEARCH_AD_ASSET |
Adicionar recursos de anúncio responsivo de pesquisa a um anúncio |
UPGRADE_SMART_SHOPPING_CAMPAIGN_TO_PERFORMANCE_MAX |
Fazer upgrade de uma campanha inteligente do Shopping para uma campanha de maior desempenho |
RESPONSIVE_SEARCH_AD_IMPROVE_AD_STRENGTH |
Melhorar a qualidade do anúncio responsivo de pesquisa |
Recuperar recomendações
Assim como a maioria das outras entidades na API Google Ads, objetos Recommendation
são buscados usando o GoogleAdsService.SearchStream
com uma consulta de linguagem de consulta do Google Ads.
Para cada tipo de recomendação, os detalhes da recomendação são fornecidos em um
campo específico recommendation
com um tipo específico:
O exemplo de código a seguir recupera todas as recomendações disponíveis e dispensadas
do tipo TEXT_AD
de uma conta e imprime alguns dos detalhes dela:
Java
private void runExample(GoogleAdsClient googleAdsClient, long customerId) { try (GoogleAdsServiceClient googleAdsServiceClient = googleAdsClient.getLatestVersion().createGoogleAdsServiceClient()) { String query = "SELECT recommendation.type, " + "recommendation.campaign, " + "recommendation.text_ad_recommendation " + "FROM recommendation " + "WHERE recommendation.type = TEXT_AD"; // Creates a request that will retrieve all recommendations using pages of the // specified page size. SearchGoogleAdsRequest request = SearchGoogleAdsRequest.newBuilder() .setCustomerId(Long.toString(customerId)) .setPageSize(PAGE_SIZE) .setQuery(query) .build(); // Issues the search request. SearchPagedResponse searchPagedResponse = googleAdsServiceClient.search(request); // Iterates over all rows in all pages and prints the requested field values for the // recommendation in each row. for (GoogleAdsRow googleAdsRow : searchPagedResponse.iterateAll()) { Recommendation recommendation = googleAdsRow.getRecommendation(); Ad recommendedAd = recommendation.getTextAdRecommendation().getAd(); System.out.printf( "Recommendation ('%s') was found for campaign '%s':%n", recommendation.getResourceName(), recommendation.getCampaign()); if (recommendedAd.hasExpandedTextAd()) { ExpandedTextAdInfo eta = recommendedAd.getExpandedTextAd(); System.out.printf( "\tHeadline 1 = '%s'%n" + "\tHeadline 2 = '%s'%n" + "\tDescription = '%s'%n", eta.getHeadlinePart1(), eta.getHeadlinePart2(), eta.getDescription()); } if (recommendedAd.getDisplayUrl() != null) { System.out.printf("\tDisplay URL = '%s'%n", recommendedAd.getDisplayUrl()); } for (String url : recommendedAd.getFinalUrlsList()) { System.out.printf("\tFinal URL = '%s'%n", url); } for (String url : recommendedAd.getFinalMobileUrlsList()) { System.out.printf("\tFinal Mobile URL = '%s'%n", url); } } } }
C#
public void Run(GoogleAdsClient client, long customerId) { // Get the GoogleAdsServiceClient . GoogleAdsServiceClient service = client.GetService(Services.V11.GoogleAdsService); string query = @"SELECT recommendation.type, recommendation.campaign, recommendation.text_ad_recommendation FROM recommendation WHERE recommendation.type = TEXT_AD"; // Create a request that will retrieve all recommendations using pages of the // specified page size. SearchGoogleAdsRequest request = new SearchGoogleAdsRequest() { CustomerId = customerId.ToString(), PageSize = PAGE_SIZE, Query = query }; try { // Issue the search request. PagedEnumerable<SearchGoogleAdsResponse, GoogleAdsRow> searchPagedResponse = service.Search(customerId.ToString(), query); // Iterates over all rows in all pages and prints the requested field values // for the recommendation in each row. foreach (GoogleAdsRow googleAdsRow in searchPagedResponse) { Recommendation recommendation = googleAdsRow.Recommendation; // ... } } catch (GoogleAdsException e) { Console.WriteLine("Failure:"); Console.WriteLine($"Message: {e.Message}"); Console.WriteLine($"Failure: {e.Failure}"); Console.WriteLine($"Request ID: {e.RequestId}"); throw; } }
PHP
public static function runExample(GoogleAdsClient $googleAdsClient, int $customerId) { $googleAdsServiceClient = $googleAdsClient->getGoogleAdsServiceClient(); // Creates a query that retrieves recommendations for text ads. $query = 'SELECT recommendation.type, recommendation.campaign, ' . 'recommendation.text_ad_recommendation ' . 'FROM recommendation ' . 'WHERE recommendation.type = TEXT_AD'; // Issues a search request by specifying page size. $response = $googleAdsServiceClient->search($customerId, $query, ['pageSize' => self::PAGE_SIZE]); // Iterates over all rows in all pages and prints the requested field values for // the recommendation in each row. foreach ($response->iterateAllElements() as $googleAdsRow) { /** @var GoogleAdsRow $googleAdsRow */ $recommendation = $googleAdsRow->getRecommendation(); printf( "Recommendation with resource name '%s' was found for campaign " . "with resource name '%s':%s", $recommendation->getResourceName(), $recommendation->getCampaign(), PHP_EOL ); $recommendedAd = $recommendation->getTextAdRecommendation()->getAd(); if (!is_null($recommendedAd->getExpandedTextAd())) { $recommendedExpandedTextAd = $recommendedAd->getExpandedTextAd(); printf( "\tHeadline part 1 is '%s'.%s", $recommendedExpandedTextAd->getHeadlinePart1(), PHP_EOL ); printf( "\tHeadline part 2 is '%s'.%s", $recommendedExpandedTextAd->getHeadlinePart2(), PHP_EOL ); printf( "\tDescription is '%s'%s", $recommendedExpandedTextAd->getDescription(), PHP_EOL ); } if (!is_null($recommendedAd->getDisplayUrl())) { printf("\tDisplay URL is '%s'.%s", $recommendedAd->getDisplayUrl(), PHP_EOL); } foreach ($recommendedAd->getFinalUrls() as $finalUrl) { /** @var string $finalUrl */ printf("\tFinal URL is '%s'.%s", $finalUrl, PHP_EOL); } foreach ($recommendedAd->getFinalMobileUrls() as $finalMobileUrl) { /** @var string $finalMobileUrl */ printf("\tFinal Mobile URL is '%s'.%s", $finalMobileUrl, PHP_EOL); } } }
Python
def main(client, customer_id): ga_service = client.get_service("GoogleAdsService") query = """ SELECT recommendation.type, recommendation.campaign, recommendation.text_ad_recommendation FROM recommendation WHERE recommendation.type = TEXT_AD""" search_request = client.get_type("SearchGoogleAdsStreamRequest") search_request.customer_id = customer_id search_request.query = query stream = ga_service.search_stream(request=search_request) for batch in stream: for row in batch.results: recommendation = row.recommendation recommended_ad = recommendation.text_ad_recommendation.ad print( f'Recommendation ("{recommendation.resource_name}") ' f'was found for campaign "{recommendation.campaign}".' ) if recommended_ad.display_url: print(f'\tDisplay URL = "{recommended_ad.display_url}"') for url in recommended_ad.final_urls: print(f'\tFinal URL = "{url}"') for url in recommended_ad.final_mobile_urls: print(f'\tFinal Mobile URL = "{url}"')
Ruby
def get_text_ad_recommendations(customer_id) # GoogleAdsClient will read a config file from # ENV['HOME']/google_ads_config.rb when called without parameters client = Google::Ads::GoogleAds::GoogleAdsClient.new ga_service = client.service.google_ads query = <<~QUERY SELECT recommendation.type, recommendation.campaign, recommendation.text_ad_recommendation FROM recommendation WHERE recommendation.type = TEXT_AD QUERY response = ga_service.search( customer_id: customer_id, query: query, page_size: PAGE_SIZE, ) response.each do |row| recommendation = row.recommendation recommended_ad = recommendation.text_ad_recommendation.ad puts "Recommendation ('#{recommendation.resource_name}') was found for "\ "campaign '#{recommendation.campaign}'." if recommended_ad.expanded_text_ad eta = recommended_ad.expanded_text_ad puts "\tHeadline 1 = '#{eta.headline_part1}'\n\tHeadline2 = '#{eta.headline_part2}'\n" + "\tDescription = '#{eta.description}'" end if recommended_ad.display_url puts "\tDisplay URL = '#{recommended_ad.display_url}'" end recommended_ad.final_urls.each do |url| puts "\tFinal Url = '#{url}'" end recommended_ad.final_mobile_urls.each do |url| puts "\tFinal Mobile Url = '#{url}'" end end end
Perl
sub get_text_ad_recommendations { my ($api_client, $customer_id) = @_; # Creates the search query. my $search_query = "SELECT recommendation.type, recommendation.campaign, " . "recommendation.text_ad_recommendation " . "FROM recommendation WHERE recommendation.type = TEXT_AD"; # Create a search Google Ads request that will retrieve all recommendations for # text ads using pages of the specified page size. my $search_request = Google::Ads::GoogleAds::V11::Services::GoogleAdsService::SearchGoogleAdsRequest ->new({ customerId => $customer_id, query => $search_query, pageSize => PAGE_SIZE }); # Get the GoogleAdsService. my $google_ads_service = $api_client->GoogleAdsService(); my $iterator = Google::Ads::GoogleAds::Utils::SearchGoogleAdsIterator->new({ service => $google_ads_service, request => $search_request }); # Iterate over all rows in all pages and print the requested field values for # the recommendation in each row. while ($iterator->has_next) { my $google_ads_row = $iterator->next; my $recommendation = $google_ads_row->{recommendation}; printf "Recommendation '%s' was found for campaign '%s':\n", $recommendation->{resourceName}, $recommendation->{campaign}; my $recommended_ad = $recommendation->{textAdRecommendation}{ad}; if ($recommended_ad->{expandedTextAd}) { my $recommended_expanded_text_ad = $recommended_ad->{expandedTextAd}; printf "\tHeadline part 1 is '%s'.\n" . "\tHeadline part 2 is '%s'.\n" . "\tDescription is '%s'.\n", $recommended_expanded_text_ad->{headlinePart1}, $recommended_expanded_text_ad->{headlinePart2}, $recommended_expanded_text_ad->{description}; } if ($recommended_ad->{displayUrl}) { printf "\tDisplay URL is '%s'.\n", $recommended_ad->{displayUrl}; } foreach my $final_url (@{$recommended_ad->{finalUrls}}) { printf "\tFinal URL is '%s'.\n", $final_url; } foreach my $final_mobile_url (@{$recommended_ad->{finalMobileUrls}}) { printf "\tFinal Mobile URL is '%s'.\n", $final_mobile_url; } } return 1; }
Entre em ação
Qualquer recomendação recuperada pode ser aplicada ou dispensada.
Dependendo do tipo, as recomendações podem mudar diariamente
ou até várias vezes ao dia. Quando isso acontece, um objeto de recomendação resource_name
pode se tornar obsoleto após a recomendação ser recuperada.
É uma boa prática tomar medidas quanto às recomendações logo após a recuperação.
Aplicar recomendações
A configuração de contas para aplicação automática de recomendações não é compatível com a API Google Ads, mas é possível implementar um comportamento semelhante para os tipos de recomendações totalmente compatíveis com a API Google Ads. Consulte o
exemplo de código
DetectAndApplyRecommendations
para saber mais.
É possível aplicar recomendações ativas ou dispensadas com o método
ApplyRecommendation
do
RecommendationService
.
Os tipos de recomendação podem ter parâmetros obrigatórios ou opcionais. A maioria das recomendações é fornecida com os valores recomendados usados por padrão. Veja detalhes de recomendação.
Use o campo
apply_parameters
de
ApplyRecommendationOperation
para aplicar recomendações com valores de parâmetro específicos. Cada tipo
de recomendação adequado tem o próprio campo:
O exemplo de código a seguir ilustra como aplicar uma recomendação com os parâmetros de aplicação recomendados:
Java
private void runExample( GoogleAdsClient googleAdsClient, long customerId, String recommendationId) { String recommendationResourceName = ResourceNames.recommendation(customerId, recommendationId); ApplyRecommendationOperation.Builder operationBuilder = ApplyRecommendationOperation.newBuilder().setResourceName(recommendationResourceName); // Each recommendation types has optional parameters to override the recommended values. // This is an example to override a recommended ad when a TextAdRecommendation is applied. // Please read // https://developers.google.com/google-ads/api/reference/rpc/latest/ApplyRecommendationOperation // for details. // Note that additional import statements are needed for this example to work. And also, please // replace INSERT_AD_ID_HERE with a valid ad ID below. // // Ad overrideAd = Ad.newBuilder().setId(Long.parseLong("INSERT_AD_ID_HERE")).build(); // operationBuilder.setTextAd(TextAdParameters.newBuilder(). // setAd(overrideAd).build()).build(); List<ApplyRecommendationOperation> operations = new ArrayList<>(); operations.add(operationBuilder.build()); try (RecommendationServiceClient recommendationServiceClient = googleAdsClient.getLatestVersion().createRecommendationServiceClient()) { ApplyRecommendationResponse response = recommendationServiceClient.applyRecommendation(Long.toString(customerId), operations); System.out.printf("Applied %d recommendation:%n", response.getResultsCount()); for (ApplyRecommendationResult result : response.getResultsList()) { System.out.println(result.getResourceName()); } } }
C#
public void Run(GoogleAdsClient client, long customerId, long recommendationId) { // Get the RecommendationServiceClient. RecommendationServiceClient service = client.GetService( Services.V11.RecommendationService); ApplyRecommendationOperation operation = new ApplyRecommendationOperation() { ResourceName = ResourceNames.Recommendation(customerId, recommendationId), // Each recommendation types has optional parameters to override the recommended // values. For example, you can override a recommended ad when a // TextAdRecommendation is applied, as shown below. // Please read https://developers.google.com/google-ads/api/reference/rpc/latest/ApplyRecommendationOperation // for details. // TextAd = new TextAdParameters() { // Ad = new Ad() { // Id = long.Parse("INSERT_AD_ID_HERE") // } // } }; try { ApplyRecommendationResponse response = service.ApplyRecommendation( customerId.ToString(), new ApplyRecommendationOperation[] { operation }); Console.WriteLine($"Applied {0} recommendation(s):", response.Results.Count); foreach (ApplyRecommendationResult result in response.Results) { Console.WriteLine($"- {result.ResourceName}"); } } catch (GoogleAdsException e) { Console.WriteLine("Failure:"); Console.WriteLine($"Message: {e.Message}"); Console.WriteLine($"Failure: {e.Failure}"); Console.WriteLine($"Request ID: {e.RequestId}"); throw; } }
PHP
public static function runExample( GoogleAdsClient $googleAdsClient, int $customerId, string $recommendationId ) { $recommendationResourceName = ResourceNames::forRecommendation($customerId, $recommendationId); $applyRecommendationOperation = new ApplyRecommendationOperation(); $applyRecommendationOperation->setResourceName($recommendationResourceName); // Each recommendation type has optional parameters to override the recommended values. // This is an example to override a recommended ad when a TextAdRecommendation is applied. // For details, please read // https://developers.google.com/google-ads/api/reference/rpc/latest/ApplyRecommendationOperation. /* $overridingAd = new Ad([ 'id' => 'INSERT_AD_ID_AS_INTEGER_HERE' ]); $applyRecommendationOperation->setTextAd(new TextAdParameters(['ad' => $overridingAd])); */ // Issues a mutate request to apply the recommendation. $recommendationServiceClient = $googleAdsClient->getRecommendationServiceClient(); $response = $recommendationServiceClient->applyRecommendation( $customerId, [$applyRecommendationOperation] ); /** @var Recommendation $appliedRecommendation */ $appliedRecommendation = $response->getResults()[0]; printf( "Applied recommendation with resource name: '%s'.%s", $appliedRecommendation->getResourceName(), PHP_EOL ); }
Python
def main(client, customer_id, recommendation_id): recommendation_service = client.get_service("RecommendationService") apply_recommendation_operation = client.get_type( "ApplyRecommendationOperation" ) apply_recommendation_operation.resource_name = ( recommendation_service.recommendation_path( customer_id, recommendation_id ) ) # This is where we override the recommended ad when a TextAdRecommendation is applied. # override_ad = client.get_type("Ad") # override_ad.resource_name = "INSERT_AD_ID_HERE" # apply_recommendation_operation.text_ad.ad = override_ad recommendation_response = recommendation_service.apply_recommendation( customer_id=customer_id, operations=[apply_recommendation_operation] ) print( "Applied recommendation with resource name: " f"'{recommendation_response.results[0].resource_name}'" )
Ruby
def apply_recommendation(customer_id, recommendation_id) # GoogleAdsClient will read a config file from # ENV['HOME']/google_ads_config.rb when called without parameters client = Google::Ads::GoogleAds::GoogleAdsClient.new recommendation_resource = client.path.recommendation(customer_id, recommendation_id) apply_recommendation_operation = client.operation.apply_recommendation apply_recommendation_operation.resource_name = recommendation_resource # Each recommendation type has optional parameters to override the recommended # values. This is an example to override a recommended ad when a # TextAdRecommendation is applied. # For details, please read # https://developers.google.com/google-ads/api/reference/rpc/google.ads.google_ads.v1.services#google.ads.google_ads.v1.services.ApplyRecommendationOperation # # text_ad_parameters = client.resource.text_ad_parameters do |tap| # tap.ad = client.resource.ad do |ad| # ad.id = "INSERT_AD_ID_AS_INTEGER_HERE" # end # end # apply_recommendation_operation.text_ad = text_ad_parameters # Issues a mutate request to apply the recommendation. recommendation_service = client.service.recommendation response = recommendation_service.apply_recommendation( customer_id: customer_id, operations: [apply_recommendation_operation], ) applied_recommendation = response.results.first puts "Applied recommendation with resource name: '#{applied_recommendation.resource_name}'." end
Perl
sub apply_recommendation { my ($api_client, $customer_id, $recommendation_id) = @_; my $recommendation_resource_name = Google::Ads::GoogleAds::V11::Utils::ResourceNames::recommendation( $customer_id, $recommendation_id); # Create an apply recommendation operation. my $apply_recommendation_operation = Google::Ads::GoogleAds::V11::Services::RecommendationService::ApplyRecommendationOperation ->new({ resourceName => $recommendation_resource_name }); # Each recommendation type has optional parameters to override the recommended values. # This is an example to override a recommended ad when a TextAdRecommendation is applied. # For details, please read # https://developers.google.com/google-ads/api/reference/rpc/latest/ApplyRecommendationOperation. # # my $overriding_ad = Google::Ads::GoogleAds::V11::Resources::Ad->new({ # id => "INSERT_AD_ID_AS_INTEGER_HERE" # }); # my $text_ad_parameters = # Google::Ads::GoogleAds::V11::Services::RecommendationService::TextAdParameters # ->new({ad => $overriding_ad}); # $apply_recommendation_operation->{textAd} = $text_ad_parameters; # Apply the recommendation. my $apply_recommendation_response = $api_client->RecommendationService()->apply({ customerId => $customer_id, operations => [$apply_recommendation_operation]}); printf "Applied recommendation with resource name: '%s'.\n", $apply_recommendation_response->{results}[0]{resourceName}; return 1; }
Assista a estes vídeos para saber mais
Aplicar parâmetros
Em massa
Erros
Testes
Dispensar recomendações
Você pode dispensar recomendações com o
RecommendationService
. A estrutura
do código é semelhante à aplicação de recomendações, mas você usa
DismissRecommendationOperation
e
RecommendationService.DismissRecommendation
.