Duyuru:
15 Nisan 2025'ten önce Earth Engine'i kullanmak için kaydedilen tüm ticari olmayan projelerin Earth Engine erişimini sürdürmek için
ticari olmayan uygunluğu doğrulaması gerekir.
ee.data.computeFeatures (Python only)
Koleksiyonlar ile düzeninizi koruyun
İçeriği tercihlerinize göre kaydedin ve kategorilere ayırın.
Özelliklere hesaplama uygulayarak özelliklerin listesini hesaplar.
Şunu döndürür:
Düz kenarlarla EPSG:4326'ya yeniden yansıtılmış bir GeoJSON özellikleri listesi.
Kullanım | İadeler |
ee.data.computeFeatures(params) | Liste |
Bağımsız Değişken | Tür | Ayrıntılar |
params | Nesne | Aşağıdaki olası değerlere sahip parametreleri içeren bir nesne:
expression - Hesaplanacak ifade.
pageSize - Sayfa başına maksimum sonuç sayısı. Sunucu, istenenden daha az resim döndürebilir. Belirtilmemişse sayfa boyutu
varsayılan olarak sayfa başına 1.000 sonuçtur.
fileFormat : Varsa tablo verileri için bir çıkış biçimi belirtir. İşlev, tablonun tamamı getirilene kadar her sayfa için bir ağ isteğinde bulunur. Getirme sayısı, tablodaki satır sayısına ve pageSize bağlıdır.
pageToken yoksayılır. Desteklenen biçimler şunlardır:
PANDAS_DATAFRAME Pandas DataFrame için ve
GEOPANDAS_GEODATAFRAME GeoPandas GeoDataFrame için.
pageToken : Sunucunun döndürmesi gereken sonuç sayfasını tanımlayan jeton.
workloadTag - Bu hesaplamayı izlemek için kullanıcı tarafından sağlanan etiket. |
Örnekler
Python kurulumu
Python API'si ve etkileşimli geliştirme için geemap
kullanımı hakkında bilgi edinmek üzere
Python Ortamı sayfasına bakın.
import ee
import geemap.core as geemap
Colab (Python)
from pprint import pprint
# Region of interest.
pt = ee.Geometry.Point([-122.0679107870136, 36.983302098145906])
# Imagery of interest.
images = (ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')
.filterBounds(pt).filterDate('2021-01-01', '2021-12-31'))
def point_overlay(image):
"""Extracts image band values for pixel-point intersection."""
return ee.Feature(pt, image.reduceRegion('first', pt, 30))
# Convert an ImageCollection to a FeatureCollection.
features = images.map(point_overlay)
features_dict = ee.data.computeFeatures({'expression': features})
pprint(features_dict)
# Do something with the features...
Aksi belirtilmediği sürece bu sayfanın içeriği Creative Commons Atıf 4.0 Lisansı altında ve kod örnekleri Apache 2.0 Lisansı altında lisanslanmıştır. Ayrıntılı bilgi için Google Developers Site Politikaları'na göz atın. Java, Oracle ve/veya satış ortaklarının tescilli ticari markasıdır.
Son güncelleme tarihi: 2025-07-26 UTC.
[null,null,["Son güncelleme tarihi: 2025-07-26 UTC."],[[["\u003cp\u003e\u003ccode\u003eee.data.computeFeatures\u003c/code\u003e applies a computation to features and returns a list of GeoJSON features.\u003c/p\u003e\n"],["\u003cp\u003eThe returned features are reprojected to EPSG:4326 and have planar edges.\u003c/p\u003e\n"],["\u003cp\u003e\u003ccode\u003eee.data.computeFeatures\u003c/code\u003e accepts parameters like expression, pageSize, fileFormat, pageToken, and workloadTag.\u003c/p\u003e\n"],["\u003cp\u003eExample code demonstrates using \u003ccode\u003eee.data.computeFeatures\u003c/code\u003e to extract image band values for a point location over a time series and convert an ImageCollection to a FeatureCollection.\u003c/p\u003e\n"]]],["The `ee.data.computeFeatures` function computes and returns a list of GeoJSON features, reprojected to EPSG:4326. It applies a user-defined computation (specified in the `expression` parameter) to features. Key parameters include `pageSize` for controlling results per page, `fileFormat` for specifying tabular output formats like Pandas or GeoPandas DataFrames, `pageToken` for paginated results, and `workloadTag` for computation tracking. The provided example demonstrates extracting band values from an `ImageCollection` using a point's intersection.\n"],null,["# ee.data.computeFeatures (Python only)\n\n\u003cbr /\u003e\n\nComputes a list of features by applying a computation to features.\n\n\u003cbr /\u003e\n\nReturns:\nA list of GeoJSON features reprojected to EPSG:4326 with planar edges.\n\n| Usage | Returns |\n|-----------------------------------|---------|\n| `ee.data.computeFeatures(params)` | List |\n\n| Argument | Type | Details |\n|----------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `params` | Object | An object containing parameters with the following possible values: `expression` - The expression to compute. `pageSize` - The maximum number of results per page. The server may return fewer images than requested. If unspecified, the page size default is 1000 results per page. `fileFormat` - If present, specifies an output format for the tabular data. The function makes a network request for each page until the entire table has been fetched. The number of fetches depends on the number of rows in the table and `pageSize`. `pageToken` is ignored. Supported formats are: `PANDAS_DATAFRAME` for a Pandas DataFrame and `GEOPANDAS_GEODATAFRAME` for a GeoPandas GeoDataFrame. `pageToken` - A token identifying a page of results the server should return. `workloadTag` - User supplied tag to track this computation. |\n\nExamples\n--------\n\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\nfrom pprint import pprint\n\n# Region of interest.\npt = ee.Geometry.Point([-122.0679107870136, 36.983302098145906])\n# Imagery of interest.\nimages = (ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')\n .filterBounds(pt).filterDate('2021-01-01', '2021-12-31'))\n\ndef point_overlay(image):\n \"\"\"Extracts image band values for pixel-point intersection.\"\"\"\n return ee.Feature(pt, image.reduceRegion('first', pt, 30))\n\n# Convert an ImageCollection to a FeatureCollection.\nfeatures = images.map(point_overlay)\n\nfeatures_dict = ee.data.computeFeatures({'expression': features})\n\npprint(features_dict)\n# Do something with the features...\n```"]]