FeatureCollection 列的统计信息

如需减少 FeatureCollection 中地图项的属性,请使用 featureCollection.reduceColumns()。请考虑以下玩具示例:

// Make a toy FeatureCollection.
var aFeatureCollection = ee.FeatureCollection([
  ee.Feature(null, {foo: 1, weight: 1}),
  ee.Feature(null, {foo: 2, weight: 2}),
  ee.Feature(null, {foo: 3, weight: 3}),
]);

// Compute a weighted mean and display it.
print(aFeatureCollection.reduceColumns({
  reducer: ee.Reducer.mean(),
  selectors: ['foo'],
  weightSelectors: ['weight']
}));

如需了解 Python API 以及如何使用 geemap 进行交互式开发,请参阅 Python 环境页面。

import ee
import geemap.core as geemap
# Make a toy FeatureCollection.
a_feature_collection = ee.FeatureCollection([
    ee.Feature(None, {'foo': 1, 'weight': 1}),
    ee.Feature(None, {'foo': 2, 'weight': 2}),
    ee.Feature(None, {'foo': 3, 'weight': 3}),
])

# Compute a weighted mean and display it.
display(
    a_feature_collection.reduceColumns(
        reducer=ee.Reducer.mean(), selectors=['foo'], weightSelectors=['weight']
    )
)

请注意,输入会根据指定的 weight 属性进行加权。因此,结果为:

mean: 2.333333333333333
    

下面是一个更复杂的示例,其中包含美国人口普查区 FeatureCollection,并将人口普查数据作为属性。感兴趣的变量是总人口和住宅单元总数。您可以通过向 reduceColumns() 提供求和归约器参数并输出结果来获取它们的总和:

// Load US census data as a FeatureCollection.
var census = ee.FeatureCollection('TIGER/2010/Blocks');

// Filter the collection to include only Benton County, OR.
var benton = census.filter(
  ee.Filter.and(
    ee.Filter.eq('statefp10', '41'),
    ee.Filter.eq('countyfp10', '003')
  )
);

// Display Benton County census blocks.
Map.setCenter(-123.27, 44.57, 13);
Map.addLayer(benton);

// Compute sums of the specified properties.
var properties = ['pop10', 'housing10'];
var sums = benton
    .filter(ee.Filter.notNull(properties))
    .reduceColumns({
      reducer: ee.Reducer.sum().repeat(2),
      selectors: properties
    });

// Print the resultant Dictionary.
print(sums);

如需了解 Python API 以及如何使用 geemap 进行交互式开发,请参阅 Python 环境页面。

import ee
import geemap.core as geemap
# Load US census data as a FeatureCollection.
census = ee.FeatureCollection('TIGER/2010/Blocks')

# Filter the collection to include only Benton County, OR.
benton = census.filter(
    ee.Filter.And(
        ee.Filter.eq('statefp10', '41'), ee.Filter.eq('countyfp10', '003')
    )
)

# Display Benton County census blocks.
m = geemap.Map()
m.set_center(-123.27, 44.57, 13)
m.add_layer(benton)
display(m)

# Compute sums of the specified properties.
properties = ['pop10', 'housing10']
sums = benton.filter(ee.Filter.notNull(properties)).reduceColumns(
    reducer=ee.Reducer.sum().repeat(2), selectors=properties
)

# Print the resultant Dictionary.
display(sums)

输出是一个 Dictionary,表示根据指定的 reducer 汇总的属性:

sum: [85579,36245]
    

请注意,上述示例使用 notNull() 过滤器,仅包含被缩减集合中所选属性的非 null 条目的地图项。最好检查是否有 null 条目,以捕获意外缺失的数据,并避免因包含 null 值的计算而导致错误。

另请注意,与 imageCollection.reduce() 不同(其中会自动针对每个波段重复 reducer),FeatureCollection 上的 reducer 必须使用 repeat() 显式重复。具体而言,对于 m 个输入,重复 m 次 reducer。由于未重复 reducer,系统可能会抛出以下错误: