Das Classifier
-Paket verarbeitet die beaufsichtigte Klassifizierung mit traditionellen ML-Algorithmen, die in Earth Engine ausgeführt werden. Zu diesen Klassifikatoren gehören CART, RandomForest, NaiveBayes und SVM. Der allgemeine Ablauf für die Klassifizierung ist:
- Trainingsdaten erfassen Stellen Sie Features zusammen, die eine Property mit dem bekannten Klassenlabel und Properties mit numerischen Werten für die Prädiktoren enthalten.
- Klassifikator instanziieren Legen Sie gegebenenfalls die Parameter fest.
- Trainieren Sie den Klassifikator mit den Trainingsdaten.
- Bilder oder Feature-Sammlungen klassifizieren
- Klassifizierungsfehler mit unabhängigen Validierungsdaten schätzen
Die Trainingsdaten sind ein FeatureCollection
mit einer Eigenschaft, in der das Klassenlabel gespeichert ist, und Eigenschaften, in denen Prädiktorvariablen gespeichert sind. Klassenlabels sollten aufeinanderfolgende Ganzzahlen sein, die bei null beginnen. Verwenden Sie bei Bedarf remap()
, um Klassenwerte in aufeinanderfolgende Ganzzahlen umzuwandeln. Die Prädiktoren sollten numerisch sein.
Trainings- und/oder Validierungsdaten können aus verschiedenen Quellen stammen. Wenn Sie Trainingsdaten interaktiv in Earth Engine erfassen möchten, können Sie die Geometrie-Zeichentools verwenden (siehe Abschnitt „Geometrietools“ auf der Seite „Code-Editor“).
Alternativ können Sie vordefinierte Trainingsdaten aus einem Earth Engine-Tabellen-Asset importieren. Weitere Informationen finden Sie auf der Seite Tabellendaten importieren. Einen Klassifikator über einen der Konstruktoren in ee.Classifier
abrufen. Trainieren Sie den Klassifikator mit classifier.train()
. Klassifiziere ein Image
oder FeatureCollection
mit classify()
. Im folgenden Beispiel wird ein CART-Klassifikator (Classification and Regression Trees, Breiman et al. 1984) verwendet, um drei einfache Klassen vorherzusagen:
// Define a function that scales and masks Landsat 8 surface reflectance images. function prepSrL8(image) { // Develop masks for unwanted pixels (fill, cloud, cloud shadow). var qaMask = image.select('QA_PIXEL').bitwiseAnd(parseInt('11111', 2)).eq(0); var saturationMask = image.select('QA_RADSAT').eq(0); // Apply the scaling factors to the appropriate bands. var getFactorImg = function(factorNames) { var factorList = image.toDictionary().select(factorNames).values(); return ee.Image.constant(factorList); }; var scaleImg = getFactorImg([ 'REFLECTANCE_MULT_BAND_.|TEMPERATURE_MULT_BAND_ST_B10']); var offsetImg = getFactorImg([ 'REFLECTANCE_ADD_BAND_.|TEMPERATURE_ADD_BAND_ST_B10']); var scaled = image.select('SR_B.|ST_B10').multiply(scaleImg).add(offsetImg); // Replace original bands with scaled bands and apply masks. return image.addBands(scaled, null, true) .updateMask(qaMask).updateMask(saturationMask); } // Make a cloud-free Landsat 8 surface reflectance composite. var image = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2') .filterDate('2021-03-01', '2021-07-01') .map(prepSrL8) .median(); // Use these bands for prediction. var bands = ['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 'SR_B7', 'ST_B10']; // Load training points. The numeric property 'class' stores known labels. var points = ee.FeatureCollection('GOOGLE/EE/DEMOS/demo_landcover_labels'); // This property stores the land cover labels as consecutive // integers starting from zero. var label = 'landcover'; // Overlay the points on the imagery to get training. var training = image.select(bands).sampleRegions({ collection: points, properties: [label], scale: 30 }); // Train a CART classifier with default parameters. var trained = ee.Classifier.smileCart().train(training, label, bands); // Classify the image with the same bands used for training. var classified = image.select(bands).classify(trained); // Display the inputs and the results. Map.setCenter(-122.0877, 37.7880, 11); Map.addLayer(image, {bands: ['SR_B4', 'SR_B3', 'SR_B2'], min: 0, max: 0.25}, 'image'); Map.addLayer(classified, {min: 0, max: 2, palette: ['orange', 'green', 'blue']}, 'classification');
import ee import geemap.core as geemap
# Define a function that scales and masks Landsat 8 surface reflectance images. def prep_sr_l8(image): """Scales and masks Landsat 8 surface reflectance images.""" # Develop masks for unwanted pixels (fill, cloud, cloud shadow). qa_mask = image.select('QA_PIXEL').bitwiseAnd(0b11111).eq(0) saturation_mask = image.select('QA_RADSAT').eq(0) # Apply the scaling factors to the appropriate bands. def _get_factor_img(factor_names): factor_list = image.toDictionary().select(factor_names).values() return ee.Image.constant(factor_list) scale_img = _get_factor_img([ 'REFLECTANCE_MULT_BAND_.|TEMPERATURE_MULT_BAND_ST_B10']) offset_img = _get_factor_img([ 'REFLECTANCE_ADD_BAND_.|TEMPERATURE_ADD_BAND_ST_B10']) scaled = image.select('SR_B.|ST_B10').multiply(scale_img).add(offset_img) # Replace original bands with scaled bands and apply masks. return image.addBands(scaled, None, True).updateMask( qa_mask).updateMask(saturation_mask) # Make a cloud-free Landsat 8 surface reflectance composite. l8_image = ( ee.ImageCollection('LANDSAT/LC08/C02/T1_L2') .filterDate('2021-03-01', '2021-07-01') .map(prep_sr_l8) .median()) # Use these bands for prediction. bands = ['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 'SR_B7', 'ST_B10'] # Load training points. The numeric property 'class' stores known labels. points = ee.FeatureCollection('GOOGLE/EE/DEMOS/demo_landcover_labels') # This property stores the land cover labels as consecutive # integers starting from zero. label = 'landcover' # Overlay the points on the imagery to get training. training = l8_image.select(bands).sampleRegions( collection=points, properties=[label], scale=30 ) # Train a CART classifier with default parameters. trained = ee.Classifier.smileCart().train(training, label, bands) # Classify the image with the same bands used for training. classified = l8_image.select(bands).classify(trained) # Display the inputs and the results. m = geemap.Map() m.set_center(-122.0877, 37.7880, 11) m.add_layer( l8_image, {'bands': ['SR_B4', 'SR_B3', 'SR_B2'], 'min': 0, 'max': 0.25}, 'image', ) m.add_layer( classified, {'min': 0, 'max': 2, 'palette': ['orange', 'green', 'blue']}, 'classification', ) m
In diesem Beispiel wird in den Trainingspunkten in der Tabelle nur das Klassenlabel gespeichert. Beachten Sie, dass in der Trainingseigenschaft ('landcover'
) aufeinanderfolgende Ganzzahlen gespeichert werden, die bei 0 beginnen. Verwenden Sie remap()
in Ihrer Tabelle, um Ihre Klassenlabels bei Bedarf in aufeinanderfolgende Ganzzahlen umzuwandeln, die bei 0 beginnen. Beachten Sie auch die Verwendung von image.sampleRegions()
, um die Prädiktoren in die Tabelle aufzunehmen und ein Trainings-Dataset zu erstellen. Geben Sie zum Trainieren des Klassifikators den Namen der Property für das Klassenlabel und eine Liste der Properties in der Trainingstabelle an, die der Klassifikator als Prädiktoren verwenden soll. Die Anzahl und Reihenfolge der Bänder im zu klassifizierenden Bild muss genau mit der Reihenfolge der für classifier.train()
bereitgestellten Listen von Eigenschaften übereinstimmen.
Mit image.select()
können Sie dafür sorgen, dass das Klassifizierungsschema mit dem Bild übereinstimmt.
Wenn die Trainingsdaten Polygone sind, die homogene Regionen darstellen, ist jedes Pixel in jedem Polygon ein Trainingspunkt. Sie können Polygone zum Trainieren verwenden, wie im folgenden Beispiel gezeigt:
// Define a function that scales and masks Landsat 8 surface reflectance images. function prepSrL8(image) { // Develop masks for unwanted pixels (fill, cloud, cloud shadow). var qaMask = image.select('QA_PIXEL').bitwiseAnd(parseInt('11111', 2)).eq(0); var saturationMask = image.select('QA_RADSAT').eq(0); // Apply the scaling factors to the appropriate bands. var getFactorImg = function(factorNames) { var factorList = image.toDictionary().select(factorNames).values(); return ee.Image.constant(factorList); }; var scaleImg = getFactorImg([ 'REFLECTANCE_MULT_BAND_.|TEMPERATURE_MULT_BAND_ST_B10']); var offsetImg = getFactorImg([ 'REFLECTANCE_ADD_BAND_.|TEMPERATURE_ADD_BAND_ST_B10']); var scaled = image.select('SR_B.|ST_B10').multiply(scaleImg).add(offsetImg); // Replace original bands with scaled bands and apply masks. return image.addBands(scaled, null, true) .updateMask(qaMask).updateMask(saturationMask); } // Make a cloud-free Landsat 8 surface reflectance composite. var image = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2') .filterDate('2018-01-01', '2019-01-01') .map(prepSrL8) .median(); // Use these bands for prediction. var bands = ['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 'SR_B7']; // Manually created polygons. var forest1 = ee.Geometry.Rectangle(-63.0187, -9.3958, -62.9793, -9.3443); var forest2 = ee.Geometry.Rectangle(-62.8145, -9.206, -62.7688, -9.1735); var nonForest1 = ee.Geometry.Rectangle(-62.8161, -9.5001, -62.7921, -9.4486); var nonForest2 = ee.Geometry.Rectangle(-62.6788, -9.044, -62.6459, -8.9986); // Make a FeatureCollection from the hand-made geometries. var polygons = ee.FeatureCollection([ ee.Feature(nonForest1, {'class': 0}), ee.Feature(nonForest2, {'class': 0}), ee.Feature(forest1, {'class': 1}), ee.Feature(forest2, {'class': 1}), ]); // Get the values for all pixels in each polygon in the training. var training = image.sampleRegions({ // Get the sample from the polygons FeatureCollection. collection: polygons, // Keep this list of properties from the polygons. properties: ['class'], // Set the scale to get Landsat pixels in the polygons. scale: 30 }); // Create an SVM classifier with custom parameters. var classifier = ee.Classifier.libsvm({ kernelType: 'RBF', gamma: 0.5, cost: 10 }); // Train the classifier. var trained = classifier.train(training, 'class', bands); // Classify the image. var classified = image.classify(trained); // Display the classification result and the input image. Map.setCenter(-62.836, -9.2399, 9); Map.addLayer(image, {bands: ['SR_B4', 'SR_B3', 'SR_B2'], min: 0, max: 0.25}, 'image'); Map.addLayer(polygons, {color: 'yellow'}, 'training polygons'); Map.addLayer(classified, {min: 0, max: 1, palette: ['orange', 'green']}, 'deforestation');
import ee import geemap.core as geemap
# Define a function that scales and masks Landsat 8 surface reflectance images. def prep_sr_l8(image): # Develop masks for unwanted pixels (fill, cloud, cloud shadow). qa_mask = image.select('QA_PIXEL').bitwiseAnd(0b11111).eq(0) saturation_mask = image.select('QA_RADSAT').eq(0) # Apply the scaling factors to the appropriate bands. def _get_factor_img(factor_names): factor_list = image.toDictionary().select(factor_names).values() return ee.Image.constant(factor_list) scale_img = _get_factor_img([ 'REFLECTANCE_MULT_BAND_.|TEMPERATURE_MULT_BAND_ST_B10']) offset_img = _get_factor_img([ 'REFLECTANCE_ADD_BAND_.|TEMPERATURE_ADD_BAND_ST_B10']) scaled = image.select('SR_B.|ST_B10').multiply(scale_img).add(offset_img) # Replace original bands with scaled bands and apply masks. return image.addBands(scaled, None, True).updateMask( qa_mask).updateMask(saturation_mask) # Make a cloud-free Landsat 8 surface reflectance composite. l8_image = ( ee.ImageCollection('LANDSAT/LC08/C02/T1_L2') .filterDate('2018-01-01', '2019-01-01') .map(prep_sr_l8) .median()) # Use these bands for prediction. bands = ['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 'SR_B7'] # Manually created polygons. forest1 = ee.Geometry.Rectangle(-63.0187, -9.3958, -62.9793, -9.3443) forest2 = ee.Geometry.Rectangle(-62.8145, -9.206, -62.7688, -9.1735) non_forest1 = ee.Geometry.Rectangle(-62.8161, -9.5001, -62.7921, -9.4486) non_forest2 = ee.Geometry.Rectangle(-62.6788, -9.044, -62.6459, -8.9986) # Make a FeatureCollection from the hand-made geometries. polygons = ee.FeatureCollection([ ee.Feature(non_forest1, {'class': 0}), ee.Feature(non_forest1, {'class': 0}), ee.Feature(forest1, {'class': 1}), ee.Feature(forest2, {'class': 1}), ]) # Get the values for all pixels in each polygon in the training. training = l8_image.sampleRegions( # Get the sample from the polygons FeatureCollection. collection=polygons, # Keep this list of properties from the polygons. properties=['class'], # Set the scale to get Landsat pixels in the polygons. scale=30, ) # Create an SVM classifier with custom parameters. classifier = ee.Classifier.libsvm(kernelType='RBF', gamma=0.5, cost=10) # Train the classifier. trained = classifier.train(training, 'class', bands) # Classify the image. classified = l8_image.classify(trained) # Display the classification result and the input image. m = geemap.Map() m.set_center(-62.836, -9.2399, 9) m.add_layer( l8_image, {'bands': ['SR_B4', 'SR_B3', 'SR_B2'], 'min': 0, 'max': 0.25}, 'image', ) m.add_layer(polygons, {'color': 'yellow'}, 'training polygons') m.add_layer( classified, {'min': 0, 'max': 1, 'palette': ['orange', 'green']}, 'deforestation', ) m
In diesem Beispiel wird ein SVM-Klassifikator (Support Vector Machine, Burges 1998) verwendet. Die SVM wird mit einer Reihe von benutzerdefinierten Parametern angegeben. Ohne a priori-Informationen zur physikalischen Natur des Vorhersageproblems sind die optimalen Parameter unbekannt. Eine grobe Anleitung zur Auswahl von Parametern für eine SVM finden Sie in Hsu et al. (2003).
Klassifikator-Ausgabemodi
Mit der Methode
ee.Classifier.setOutputMode()
wird das Format der Ergebnisse der beaufsichtigten Klassifizierung gesteuert. So können die Ergebnisse auf unterschiedliche Weise strukturiert werden:
- CLASSIFICATION (Standard): Die Ausgabe ist die Klassennummer.
- REGRESSION: Die Ausgabe ist das Ergebnis der Standardregression.
- WAHRSCHEINLICHKEIT: Die Ausgabe ist die Wahrscheinlichkeit, dass die Klassifizierung korrekt ist.
- MULTIPROBABILITY: Die Ausgabe ist ein Array von Wahrscheinlichkeiten, dass jede Klasse korrekt ist, sortiert nach den gesehenen Klassen.
- RAW: Die Ausgabe ist ein Array der internen Darstellung des Klassifizierungsprozesses. Beispielsweise die Rohstimmen in Modellen mit mehreren Entscheidungsbäumen.
- RAW_REGRESSION: Die Ausgabe ist ein Array der internen Darstellung des Regressionsprozesses. Beispielsweise die Rohvorhersagen mehrerer Regressionsbäume.
Die Unterstützung dieser Ausgabemodi variiert. In der folgenden Tabelle sind die unterstützten Modi für jeden Klassifikator zusammengefasst.
Klassifikator | KLASSIFIZIERUNG | REGRESSION | WAHRSCHEINLICHKEIT | MULTIPROBABILITY | RAW | RAW_REGRESSION |
---|---|---|---|---|---|---|
ee.Classifier.amnhMaxent | ||||||
ee.Classifier.minimumDistance | ||||||
ee.Classifier.smileCart | ||||||
ee.Classifier.smileGradientTreeBoost | ||||||
ee.Classifier.smileKNN | ||||||
ee.Classifier.smileNaiveBayes | ||||||
ee.Classifier.smileRandomForest | ||||||
ee.Classifier.libsvm C_SVC | ||||||
ee.Classifier.libsvm NU_SVC | ||||||
ee.Classifier.libsvm ONE_CLASS | ||||||
ee.Classifier.libsvm EPSILON_SVR | ||||||
ee.Classifier.libsvm NU_SVR |
Verwenden Sie setOutputMode()
, um vor dem Trainieren eines Klassifikators das Ausgabeformat zu definieren.
Sie können den SVM-Klassifikator im vorherigen Codeblock beispielsweise so konfigurieren, dass anstelle der Standardklassifizierungslabels die Wahrscheinlichkeit ausgegeben wird:
var classifier = ee.Classifier.libsvm({ kernelType: 'RBF', gamma: 0.5, cost: 10 }).setOutputMode('PROBABILITY'); var trained = classifier.train(training, 'class', bands);
import ee import geemap.core as geemap
classifier = ee.Classifier.libsvm( kernelType='RBF', gamma=0.5, cost=10 ).setOutputMode('PROBABILITY') trained = classifier.train(training, 'class', bands)
Prüfung der Richtigkeit
Verwenden Sie einen ConfusionMatrix
, um die Genauigkeit eines Klassifikators zu bewerten (Stehman 1997). Im folgenden Beispiel werden mit sample()
Trainings- und Validierungsdaten aus einem MODIS-Referenzbild generiert und Verwirrungsmatrizen verglichen, die die Trainings- und Validierungsgenauigkeit repräsentieren:
// Define a region of interest. var roi = ee.Geometry.BBox(-122.93, 36.99, -121.20, 38.16); // Define a function that scales and masks Landsat 8 surface reflectance images. function prepSrL8(image) { // Develop masks for unwanted pixels (fill, cloud, cloud shadow). var qaMask = image.select('QA_PIXEL').bitwiseAnd(parseInt('11111', 2)).eq(0); var saturationMask = image.select('QA_RADSAT').eq(0); // Apply the scaling factors to the appropriate bands. var getFactorImg = function(factorNames) { var factorList = image.toDictionary().select(factorNames).values(); return ee.Image.constant(factorList); }; var scaleImg = getFactorImg([ 'REFLECTANCE_MULT_BAND_.|TEMPERATURE_MULT_BAND_ST_B10']); var offsetImg = getFactorImg([ 'REFLECTANCE_ADD_BAND_.|TEMPERATURE_ADD_BAND_ST_B10']); var scaled = image.select('SR_B.|ST_B10').multiply(scaleImg).add(offsetImg); // Replace original bands with scaled bands and apply masks. return image.addBands(scaled, null, true) .updateMask(qaMask).updateMask(saturationMask); } // Make a cloud-free Landsat 8 surface reflectance composite. var input = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2') .filterBounds(roi) .filterDate('2020-03-01', '2020-07-01') .map(prepSrL8) .median() .setDefaultProjection('EPSG:4326', null, 30) .select(['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 'SR_B7']); // Use MODIS land cover, IGBP classification, for training. var modis = ee.Image('MODIS/006/MCD12Q1/2020_01_01') .select('LC_Type1'); // Sample the input imagery to get a FeatureCollection of training data. var training = input.addBands(modis).sample({ region: roi, numPixels: 5000, seed: 0 }); // Make a Random Forest classifier and train it. var classifier = ee.Classifier.smileRandomForest(10) .train({ features: training, classProperty: 'LC_Type1', inputProperties: ['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 'SR_B7'] }); // Classify the input imagery. var classified = input.classify(classifier); // Get a confusion matrix representing resubstitution accuracy. var trainAccuracy = classifier.confusionMatrix(); print('Resubstitution error matrix: ', trainAccuracy); print('Training overall accuracy: ', trainAccuracy.accuracy()); // Sample the input with a different random seed to get validation data. var validation = input.addBands(modis).sample({ region: roi, numPixels: 5000, seed: 1 // Filter the result to get rid of any null pixels. }).filter(ee.Filter.notNull(input.bandNames())); // Classify the validation data. var validated = validation.classify(classifier); // Get a confusion matrix representing expected accuracy. var testAccuracy = validated.errorMatrix('LC_Type1', 'classification'); print('Validation error matrix: ', testAccuracy); print('Validation overall accuracy: ', testAccuracy.accuracy()); // Define a palette for the IGBP classification. var igbpPalette = [ 'aec3d4', // water '152106', '225129', '369b47', '30eb5b', '387242', // forest '6a2325', 'c3aa69', 'b76031', 'd9903d', '91af40', // shrub, grass '111149', // wetlands 'cdb33b', // croplands 'cc0013', // urban '33280d', // crop mosaic 'd7cdcc', // snow and ice 'f7e084', // barren '6f6f6f' // tundra ]; // Display the input and the classification. Map.centerObject(roi, 10); Map.addLayer(input.clip(roi), {bands: ['SR_B4', 'SR_B3', 'SR_B2'], min: 0, max: 0.25}, 'landsat'); Map.addLayer(classified.clip(roi), {palette: igbpPalette, min: 0, max: 17}, 'classification');
import ee import geemap.core as geemap
# Define a region of interest. roi = ee.Geometry.BBox(-122.93, 36.99, -121.20, 38.16) # Define a function that scales and masks Landsat 8 surface reflectance images. def prep_sr_l8(image): """Scales and masks Landsat 8 surface reflectance images.""" # Develop masks for unwanted pixels (fill, cloud, cloud shadow). qa_mask = image.select('QA_PIXEL').bitwiseAnd(0b1111).eq(0) saturation_mask = image.select('QA_RADSAT').eq(0) # Apply the scaling factors to the appropriate bands. def _get_factor_img(factor_names): factor_list = image.toDictionary().select(factor_names).values() return ee.Image.constant(factor_list) scale_img = _get_factor_img([ 'REFLECTANCE_MULT_BAND_.|TEMPERATURE_MULT_BAND_ST_B10']) offset_img = _get_factor_img([ 'REFLECTANCE_ADD_BAND_.|TEMPERATURE_ADD_BAND_ST_B10']) scaled = image.select('SR_B.|ST_B10').multiply(scale_img).add(offset_img) # Replace original bands with scaled bands and apply masks. return image.addBands(scaled, None, True).updateMask( qa_mask).updateMask(saturation_mask) # Make a cloud-free Landsat 8 surface reflectance composite. input_image = ( ee.ImageCollection('LANDSAT/LC08/C02/T1_L2') .filterBounds(roi) .filterDate('2020-03-01', '2020-07-01') .map(prep_sr_l8) .median() .setDefaultProjection('EPSG:4326', None, 30) .select(['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 'SR_B7']) ) # Use MODIS land cover, IGBP classification, for training. modis = ee.Image('MODIS/006/MCD12Q1/2020_01_01').select('LC_Type1') # Sample the input imagery to get a FeatureCollection of training data. training = input_image.addBands(modis).sample( region=roi, numPixels=5000, seed=0 ) # Make a Random Forest classifier and train it. classifier = ee.Classifier.smileRandomForest(10).train( features=training, classProperty='LC_Type1', inputProperties=['SR_B2', 'SR_B3', 'SR_B4', 'SR_B5', 'SR_B6', 'SR_B7'], ) # Classify the input imagery. classified = input_image.classify(classifier) # Get a confusion matrix representing resubstitution accuracy. train_accuracy = classifier.confusionMatrix() display('Resubstitution error matrix:', train_accuracy) display('Training overall accuracy:', train_accuracy.accuracy()) # Sample the input with a different random seed to get validation data. validation = ( input_image.addBands(modis) .sample( region=roi, numPixels=5000, seed=1, # Filter the result to get rid of any null pixels. ) .filter(ee.Filter.notNull(input_image.bandNames())) ) # Classify the validation data. validated = validation.classify(classifier) # Get a confusion matrix representing expected accuracy. test_accuracy = validated.errorMatrix('LC_Type1', 'classification') display('Validation error matrix:', test_accuracy) display('Validation overall accuracy:', test_accuracy.accuracy()) # Define a palette for the IGBP classification. igbp_palette = [ 'aec3d4', # water '152106', '225129', '369b47', '30eb5b', '387242', # forest '6a2325', 'c3aa69', 'b76031', 'd9903d', '91af40', # shrub, grass '111149', # wetlands 'cdb33b', # croplands 'cc0013', # urban '33280d', # crop mosaic 'd7cdcc', # snow and ice 'f7e084', # barren '6f6f6f' # tundra ] # Display the input and the classification with geemap in a notebook. m = geemap.Map() m.center_object(roi, 10) m.add_layer( input_image.clip(roi), {'bands': ['SR_B4', 'SR_B3', 'SR_B2'], 'min': 0, 'max': 0.25}, 'landsat', ) m.add_layer( classified.clip(roi), {'palette': igbp_palette, 'min': 0, 'max': 17}, 'classification', ) m
In diesem Beispiel wird ein Random-Forest-Klassifikator (Breiman 2001) mit 10 Bäumen verwendet, um MODIS-Daten auf die Auflösung von Landsat herunterzustufen. Mit der Methode sample()
werden zwei zufällige Stichproben aus den MODIS-Daten generiert: eine für das Training und eine für die Validierung. Das Trainingsbeispiel wird zum Trainieren des Klassifikators verwendet.
Die Genauigkeit der Datensubstitution für die Trainingsdaten finden Sie unter classifier.confusionMatrix()
. Klassifizieren Sie die Validierungsdaten, um eine hohe Validierungsgenauigkeit zu erzielen. Dadurch wird der Validierung FeatureCollection
eine classification
-Property hinzugefügt. Rufen Sie errorMatrix()
auf den klassifizierten FeatureCollection
auf, um eine Wahrheitsmatrix mit der Validierungsgenauigkeit (erwartete Genauigkeit) zu erhalten.
Prüfen Sie die Ausgabe, um festzustellen, dass die Gesamtgenauigkeit, die anhand der Trainingsdaten geschätzt wurde, viel höher ist als die der Validierungsdaten. Die anhand der Trainingsdaten geschätzte Genauigkeit ist eine Überschätzung, da der Random Forest an die Trainingsdaten angepasst wird. Die erwartete Genauigkeit bei unbekannten Daten ist niedriger, wie die Schätzung aus den Validierungsdaten zeigt.
Sie können auch ein einzelnes Sample mit der Methode randomColumn()
in Feature-Sammlungen partitionieren. Fortsetzung des vorherigen Beispiels:
var sample = input.addBands(modis).sample({ region: roi, numPixels: 5000, seed: 0 }); // The randomColumn() method will add a column of uniform random // numbers in a column named 'random' by default. sample = sample.randomColumn(); var split = 0.7; // Roughly 70% training, 30% testing. var training = sample.filter(ee.Filter.lt('random', split)); var validation = sample.filter(ee.Filter.gte('random', split));
import ee import geemap.core as geemap
sample = input_image.addBands(modis).sample(region=roi, numPixels=5000, seed=0) # The randomColumn() method will add a column of uniform random # numbers in a column named 'random' by default. sample = sample.randomColumn() split = 0.7 # Roughly 70% training, 30% testing. training = sample.filter(ee.Filter.lt('random', split)) validation = sample.filter(ee.Filter.gte('random', split))
Außerdem sollten die Trainingsstichproben nicht mit den Bewertungsstichproben korreliert sein. Dies kann auf eine räumliche Autokorrelation des zu prognostizierenden Phänomens zurückzuführen sein. Eine Möglichkeit, solche Stichproben auszuschließen, besteht darin, Stichproben zu entfernen, die sich in einer bestimmten Entfernung zu anderen Stichproben befinden. Dies kann mit einer räumlichen Verbindung erfolgen:
// Sample the input imagery to get a FeatureCollection of training data. var sample = input.addBands(modis).sample({ region: roi, numPixels: 5000, seed: 0, geometries: true, tileScale: 16 }); // The randomColumn() method will add a column of uniform random // numbers in a column named 'random' by default. sample = sample.randomColumn(); var split = 0.7; // Roughly 70% training, 30% testing. var training = sample.filter(ee.Filter.lt('random', split)); print('Training size:', training.size()); var validation = sample.filter(ee.Filter.gte('random', split)); // Spatial join. var distFilter = ee.Filter.withinDistance({ distance: 1000, leftField: '.geo', rightField: '.geo', maxError: 10 }); var join = ee.Join.inverted(); // Apply the join. training = join.apply(training, validation, distFilter); print('Training size after spatial filtering:', training.size());
import ee import geemap.core as geemap
# Sample the input imagery to get a FeatureCollection of training data. sample = input_image.addBands(modis).sample( region=roi, numPixels=5000, seed=0, geometries=True, tileScale=16 ) # The randomColumn() method will add a column of uniform random # numbers in a column named 'random' by default. sample = sample.randomColumn() split = 0.7 # Roughly 70% training, 30% testing. training = sample.filter(ee.Filter.lt('random', split)) display('Training size:', training.size()) validation = sample.filter(ee.Filter.gte('random', split)) # Spatial join. dist_filter = ee.Filter.withinDistance( distance=1000, leftField='.geo', rightField='.geo', maxError=10 ) join = ee.Join.inverted() # Apply the join. training = join.apply(training, validation, dist_filter) display('Training size after spatial filtering:', training.size())
Beachten Sie im vorherigen Snippet, dass geometries
in sample()
auf true
festgelegt ist. So bleiben die raumbezogenen Informationen der Stichprobenpunkte erhalten, die für eine räumliche Zusammenführung erforderlich sind. Beachten Sie auch, dass tileScale
auf 16
eingestellt ist.
So wird der Fehler „Nutzerspeicherlimit überschritten“ vermieden.
Klassifikatoren speichern
Das Training eines Klassifikators mit einer großen Menge an Eingabedaten ist möglicherweise nicht interaktiv möglich, weil die Eingabe zu groß ist (> 99 MB) oder weil das Training zu lange dauert (5 Minuten).
Mit Export.classifier.toAsset
können Sie das Klassifikatortraining als Batchjob ausführen, sodass es länger und mit mehr Arbeitsspeicher ausgeführt werden kann. Klassifikatoren, deren Training aufwendig ist, können exportiert und neu geladen werden, um ein erneutes Training zu vermeiden.
// Using the random forest classifier defined earlier, export the random // forest classifier as an Earth Engine asset. var classifierAssetId = 'projects/<PROJECT-ID>/assets/upscaled_MCD12Q1_random_forest'; Export.classifier.toAsset( classifier, 'Saved-random-forest-IGBP-classification', classifierAssetId );
import ee import geemap.core as geemap
# Using the random forest classifier defined earlier, export the random # forest classifier as an Earth Engine asset. classifier_asset_id = ( 'projects/<PROJECT-ID>/assets/upscaled_MCD12Q1_random_forest' ) task = ee.batch.Export.classifier.toAsset( classifier, 'Saved-random-forest-IGBP-classification', classifier_asset_id ) task.start()
Verwenden Sie den Algorithmus „ee.Classifier.load“, um den gespeicherten Klassifikator zu laden, geben Sie die exportierte Klassifikator-ID an und verwenden Sie ihn wie jeden anderen trainierten Klassifikator.
// Once the classifier export finishes, we can load our saved classifier. var savedClassifier = ee.Classifier.load(classifierAssetId); // We can perform classification just as before with the saved classifier now. var classified = input.classify(savedClassifier); Map.addLayer(classified.clip(roi), {palette: igbpPalette, min: 0, max: 17}, 'classification');
import ee import geemap.core as geemap
# Once the classifier export finishes, we can load our saved classifier. saved_classifier = ee.Classifier.load(classifier_asset_id) # We can perform classification just as before with the saved classifier now. classified = input_image.classify(saved_classifier) m = geemap.Map() m.center_object(roi, 10) m.add_layer( classified.clip(roi), {'palette': igbp_palette, 'min': 0, 'max': 17}, 'classification', ) m