Filtrar un FeatureCollection
es similar a filtrar un ImageCollection
. (consulta la sección Filtering an ImageCollection). Existen los métodos de conveniencia featureCollection.filterDate()
y featureCollection.filterBounds()
, y el método featureCollection.filter()
para usar con cualquier ee.Filter
aplicable. Por ejemplo:
// Load watersheds from a data table. var sheds = ee.FeatureCollection('USGS/WBD/2017/HUC06') // Convert 'areasqkm' property from string to number. .map(function(feature){ var num = ee.Number.parse(feature.get('areasqkm')); return feature.set('areasqkm', num); }); // Define a region roughly covering the continental US. var continentalUS = ee.Geometry.Rectangle(-127.18, 19.39, -62.75, 51.29); // Filter the table geographically: only watersheds in the continental US. var filtered = sheds.filterBounds(continentalUS); // Check the number of watersheds after filtering for location. print('Count after filter:', filtered.size()); // Filter to get only larger continental US watersheds. var largeSheds = filtered.filter(ee.Filter.gt('areasqkm', 25000)); // Check the number of watersheds after filtering for size and location. print('Count after filtering by size:', largeSheds.size());
import ee import geemap.core as geemap
# Load watersheds from a data table. sheds = ( ee.FeatureCollection('USGS/WBD/2017/HUC06') # Convert 'areasqkm' property from string to number. .map( lambda feature: feature.set( 'areasqkm', ee.Number.parse(feature.get('areasqkm')) ) ) ) # Define a region roughly covering the continental US. continental_us = ee.Geometry.Rectangle(-127.18, 19.39, -62.75, 51.29) # Filter the table geographically: only watersheds in the continental US. filtered = sheds.filterBounds(continental_us) # Check the number of watersheds after filtering for location. display('Count after filter:', filtered.size()) # Filter to get only larger continental US watersheds. large_sheds = filtered.filter(ee.Filter.gt('areasqkm', 25000)) # Check the number of watersheds after filtering for size and location. display('Count after filtering by size:', large_sheds.size())