纹理

Earth Engine 提供了多种用于估算空间纹理的特殊方法。当图片是离散值(而非浮点值)时,您可以使用 image.entropy() 计算邻域中的

// Load a high-resolution NAIP image.
var image = ee.Image('USDA/NAIP/DOQQ/m_3712213_sw_10_1_20140613');

// Zoom to San Francisco, display.
Map.setCenter(-122.466123, 37.769833, 17);
Map.addLayer(image, {max: 255}, 'image');

// Get the NIR band.
var nir = image.select('N');

// Define a neighborhood with a kernel.
var square = ee.Kernel.square({radius: 4});

// Compute entropy and display.
var entropy = nir.entropy(square);
Map.addLayer(entropy,
             {min: 1, max: 5, palette: ['0000CC', 'CC0000']},
             'entropy');

请注意,NIR 波段会在调用 entropy() 之前缩放为 8 位,因为熵计算需要离散值输入。内核中的非零元素指定了邻域。

测量纹理的另一种方法是使用灰度级共现矩阵 (GLCM)。使用上例中的图片和核,按如下方式计算基于 GLCM 的对比度:

// Compute the gray-level co-occurrence matrix (GLCM), get contrast.
var glcm = nir.glcmTexture({size: 4});
var contrast = glcm.select('N_contrast');
Map.addLayer(contrast,
             {min: 0, max: 1500, palette: ['0000CC', 'CC0000']},
             'contrast');

image.glcm() 会输出许多纹理测量值。如需查看输出的完整参考文档,请参阅 Haralick 等人 (1973)Conners 等人 (1984)

您可以在 Earth Engine 中使用 image.neighborhoodToBands() 计算 Geary 的 C (Anselin 1995) 等空间关联的局部测量值。使用上例中的图片:

// Create a list of weights for a 9x9 kernel.
var row = [1, 1, 1, 1, 1, 1, 1, 1, 1];
// The center of the kernel is zero.
var centerRow = [1, 1, 1, 1, 0, 1, 1, 1, 1];
// Assemble a list of lists: the 9x9 kernel weights as a 2-D matrix.
var rows = [row, row, row, row, centerRow, row, row, row, row];
// Create the kernel from the weights.
// Non-zero weights represent the spatial neighborhood.
var kernel = ee.Kernel.fixed(9, 9, rows, -4, -4, false);

// Convert the neighborhood into multiple bands.
var neighs = nir.neighborhoodToBands(kernel);

// Compute local Geary's C, a measure of spatial association.
var gearys = nir.subtract(neighs).pow(2).reduce(ee.Reducer.sum())
             .divide(Math.pow(9, 2));
Map.addLayer(gearys,
             {min: 20, max: 2500, palette: ['0000CC', 'CC0000']},
             "Geary's C");

如需查看使用邻域标准差计算图片纹理的示例,请参阅“图片邻域的统计信息”页面