FeatureCollection 欄的統計資料

如要減少 FeatureCollection 中功能的屬性,請使用 featureCollection.reduceColumns()。請參考以下玩具範例:

程式碼編輯器 (JavaScript)

// Make a toy FeatureCollection.
var aFeatureCollection = ee.FeatureCollection([
  ee.Feature(null, {foo: 1, weight: 1}),
  ee.Feature(null, {foo: 2, weight: 2}),
  ee.Feature(null, {foo: 3, weight: 3}),
]);

// Compute a weighted mean and display it.
print(aFeatureCollection.reduceColumns({
  reducer: ee.Reducer.mean(),
  selectors: ['foo'],
  weightSelectors: ['weight']
}));

Python 設定

請參閱「 Python 環境」頁面,瞭解 Python API 和如何使用 geemap 進行互動式開發。

import ee
import geemap.core as geemap

Colab (Python)

# Make a toy FeatureCollection.
a_feature_collection = ee.FeatureCollection([
    ee.Feature(None, {'foo': 1, 'weight': 1}),
    ee.Feature(None, {'foo': 2, 'weight': 2}),
    ee.Feature(None, {'foo': 3, 'weight': 3}),
])

# Compute a weighted mean and display it.
display(
    a_feature_collection.reduceColumns(
        reducer=ee.Reducer.mean(), selectors=['foo'], weightSelectors=['weight']
    )
)

請注意,系統會根據指定的 weight 屬性為輸入內容加權。因此結果如下:

mean: 2.333333333333333
    

舉例來說,假設您有一個 FeatureCollection 的美國人口普查區塊,並將人口普查資料做為屬性。我們要分析的變項是總人口和總住宅單位。您可以將加總縮減器引數提供給 reduceColumns(),然後列印結果,藉此取得加總值:

程式碼編輯器 (JavaScript)

// Load US census data as a FeatureCollection.
var census = ee.FeatureCollection('TIGER/2010/Blocks');

// Filter the collection to include only Benton County, OR.
var benton = census.filter(
  ee.Filter.and(
    ee.Filter.eq('statefp10', '41'),
    ee.Filter.eq('countyfp10', '003')
  )
);

// Display Benton County census blocks.
Map.setCenter(-123.27, 44.57, 13);
Map.addLayer(benton);

// Compute sums of the specified properties.
var properties = ['pop10', 'housing10'];
var sums = benton
    .filter(ee.Filter.notNull(properties))
    .reduceColumns({
      reducer: ee.Reducer.sum().repeat(2),
      selectors: properties
    });

// Print the resultant Dictionary.
print(sums);

Python 設定

請參閱「 Python 環境」頁面,瞭解 Python API 和如何使用 geemap 進行互動式開發。

import ee
import geemap.core as geemap

Colab (Python)

# Load US census data as a FeatureCollection.
census = ee.FeatureCollection('TIGER/2010/Blocks')

# Filter the collection to include only Benton County, OR.
benton = census.filter(
    ee.Filter.And(
        ee.Filter.eq('statefp10', '41'), ee.Filter.eq('countyfp10', '003')
    )
)

# Display Benton County census blocks.
m = geemap.Map()
m.set_center(-123.27, 44.57, 13)
m.add_layer(benton)
display(m)

# Compute sums of the specified properties.
properties = ['pop10', 'housing10']
sums = benton.filter(ee.Filter.notNull(properties)).reduceColumns(
    reducer=ee.Reducer.sum().repeat(2), selectors=properties
)

# Print the resultant Dictionary.
display(sums)

輸出內容是 Dictionary,代表根據指定的縮減器匯總的屬性:

sum: [85579,36245]
    

請注意,上述範例使用 notNull() 篩選器,只納入集合中所選屬性非空值的項目,以便減少特徵數量。建議您檢查空值項目,以便找出意外遺漏的資料,並避免因包含空值的計算作業而導致的錯誤。

另請注意,與 imageCollection.reduce() 不同的是,imageCollection.reduce() 會自動針對每個頻帶重複執行 reducer,但 FeatureCollection 上的 reducer 必須使用 repeat() 明確重複。具體來說,針對 m 輸入,重複執行縮減器 m 次。由於未重複使用 reducer,因此可能會擲回以下錯誤: