Anúncio: todos os projetos não comerciais registrados para usar o Earth Engine antes de
15 de abril de 2025 precisam
verificar a qualificação não comercial para manter o acesso ao Earth Engine.
Ordenação e redução de matrizes
Mantenha tudo organizado com as coleções
Salve e categorize o conteúdo com base nas suas preferências.
A ordenação de matriz é útil para gerar mosaicos de qualidade personalizados que envolvem a redução de um
subconjunto de bandas de imagem de acordo com os valores em uma banda diferente. O exemplo a seguir classifica por NDVI e, em seguida, recebe a média de um subconjunto de observações na coleção com os valores de NDVI mais altos:
Editor de código (JavaScript)
// Define a function that scales and masks Landsat 8 surface reflectance images
// and adds an NDVI band.
function prepSrL8(image) {
// Develop masks for unwanted pixels (fill, cloud, cloud shadow).
var qaMask = image.select('QA_PIXEL').bitwiseAnd(parseInt('11111', 2)).eq(0);
var saturationMask = image.select('QA_RADSAT').eq(0);
// Apply the scaling factors to the appropriate bands.
var opticalBands = image.select('SR_B.').multiply(0.0000275).add(-0.2);
var thermalBands = image.select('ST_B.*').multiply(0.00341802).add(149.0);
// Calculate NDVI.
var ndvi = opticalBands.normalizedDifference(['SR_B5', 'SR_B4'])
.rename('NDVI');
// Replace original bands with scaled bands, add NDVI band, and apply masks.
return image.addBands(opticalBands, null, true)
.addBands(thermalBands, null, true)
.addBands(ndvi)
.updateMask(qaMask)
.updateMask(saturationMask);
}
// Define an arbitrary region of interest as a point.
var roi = ee.Geometry.Point(-122.26032, 37.87187);
// Load a Landsat 8 surface reflectance collection.
var collection = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')
// Filter to get only imagery at a point of interest.
.filterBounds(roi)
// Filter to get only six months of data.
.filterDate('2021-01-01', '2021-07-01')
// Prepare images by mapping the prepSrL8 function over the collection.
.map(prepSrL8)
// Select the bands of interest to avoid taking up unneeded memory.
.select('SR_B.|NDVI');
// Convert the collection to an array.
var array = collection.toArray();
// Label of the axes.
var imageAxis = 0;
var bandAxis = 1;
// Get the NDVI slice and the bands of interest.
var bandNames = collection.first().bandNames();
var bands = array.arraySlice(bandAxis, 0, bandNames.length());
var ndvi = array.arraySlice(bandAxis, -1);
// Sort by descending NDVI.
var sorted = bands.arraySort(ndvi.multiply(-1));
// Get the highest 20% NDVI observations per pixel.
var numImages = sorted.arrayLength(imageAxis).multiply(0.2).int();
var highestNdvi = sorted.arraySlice(imageAxis, 0, numImages);
// Get the mean of the highest 20% NDVI observations by reducing
// along the image axis.
var mean = highestNdvi.arrayReduce({
reducer: ee.Reducer.mean(),
axes: [imageAxis]
});
// Turn the reduced array image into a multi-band image for display.
var meanImage = mean.arrayProject([bandAxis]).arrayFlatten([bandNames]);
Map.centerObject(roi, 12);
Map.addLayer(meanImage, {bands: ['SR_B6', 'SR_B5', 'SR_B4'], min: 0, max: 0.4});
Configuração do Python
Consulte a página
Ambiente Python para informações sobre a API Python e o uso de
geemap
para desenvolvimento interativo.
import ee
import geemap.core as geemap
Colab (Python)
# Define a function that scales and masks Landsat 8 surface reflectance images
# and adds an NDVI band.
def prep_sr_l8(image):
# Develop masks for unwanted pixels (fill, cloud, cloud shadow).
qa_mask = image.select('QA_PIXEL').bitwiseAnd(int('11111', 2)).eq(0)
saturation_mask = image.select('QA_RADSAT').eq(0)
# Apply the scaling factors to the appropriate bands.
optical_bands = image.select('SR_B.').multiply(0.0000275).add(-0.2)
thermal_bands = image.select('ST_B.*').multiply(0.00341802).add(149.0)
# Calculate NDVI.
ndvi = optical_bands.normalizedDifference(['SR_B5', 'SR_B4']).rename('NDVI')
# Replace the original bands with the scaled ones and apply the masks.
return (
image.addBands(optical_bands, None, True)
.addBands(thermal_bands, None, True)
.addBands(ndvi)
.updateMask(qa_mask)
.updateMask(saturation_mask)
)
# Define an arbitrary region of interest as a point.
roi = ee.Geometry.Point(-122.26032, 37.87187)
# Load a Landsat 8 surface reflectance collection.
collection = (
ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')
# Filter to get only imagery at a point of interest.
.filterBounds(roi)
# Filter to get only six months of data.
.filterDate('2021-01-01', '2021-07-01')
# Prepare images by mapping the prep_sr_l8 function over the collection.
.map(prep_sr_l8)
# Select the bands of interest to avoid taking up unneeded memory.
.select('SR_B.|NDVI')
)
# Convert the collection to an array.
array = collection.toArray()
# Label of the axes.
image_axis = 0
band_axis = 1
# Get the NDVI slice and the bands of interest.
band_names = collection.first().bandNames()
bands = array.arraySlice(band_axis, 0, band_names.length())
ndvi = array.arraySlice(band_axis, -1)
# Sort by descending NDVI.
sorted = bands.arraySort(ndvi.multiply(-1))
# Get the highest 20% NDVI observations per pixel.
num_images = sorted.arrayLength(image_axis).multiply(0.2).int()
highest_ndvi = sorted.arraySlice(image_axis, 0, num_images)
# Get the mean of the highest 20% NDVI observations by reducing
# along the image axis.
mean = highest_ndvi.arrayReduce(reducer=ee.Reducer.mean(), axes=[image_axis])
# Turn the reduced array image into a multi-band image for display.
mean_image = mean.arrayProject([band_axis]).arrayFlatten([band_names])
m = geemap.Map()
m.center_object(roi, 12)
m.add_layer(
mean_image, {'bands': ['SR_B6', 'SR_B5', 'SR_B4'], 'min': 0, 'max': 0.4}
)
m
Como no exemplo de modelagem linear, separe as bandas de interesse do índice de classificação (NDVI) usando arraySlice()
ao longo do eixo da banda. Em seguida, classifique as bandas de interesse por
índice de classificação usando arraySort()
. Depois que os pixels forem classificados por NDVI decrescente, use arraySlice()
ao longo do imageAxis
para receber 20% dos pixels de NDVI mais altos. Por fim, aplique arrayReduce()
ao
imageAxis
com um redutor médio para obter a média dos pixels NDVI
mais altos. A etapa final converte a imagem de matriz de volta para uma imagem de várias bandas para exibição.
Exceto em caso de indicação contrária, o conteúdo desta página é licenciado de acordo com a Licença de atribuição 4.0 do Creative Commons, e as amostras de código são licenciadas de acordo com a Licença Apache 2.0. Para mais detalhes, consulte as políticas do site do Google Developers. Java é uma marca registrada da Oracle e/ou afiliadas.
Última atualização 2025-07-25 UTC.
[null,null,["Última atualização 2025-07-25 UTC."],[[["\u003cp\u003eThis example demonstrates using array sorting to calculate the mean of the top 20% of Landsat 8 images with the highest NDVI values within a specific region and timeframe.\u003c/p\u003e\n"],["\u003cp\u003eThe process involves preparing the Landsat 8 collection by scaling, masking, and adding an NDVI band.\u003c/p\u003e\n"],["\u003cp\u003eImage pixels are sorted based on NDVI values using \u003ccode\u003earraySort()\u003c/code\u003e, allowing selection of the highest values using \u003ccode\u003earraySlice()\u003c/code\u003e.\u003c/p\u003e\n"],["\u003cp\u003eThe \u003ccode\u003earrayReduce()\u003c/code\u003e function is applied to calculate the mean of the selected pixels, resulting in a composite image representing the desired values.\u003c/p\u003e\n"],["\u003cp\u003eThe final output is a multi-band image displaying the mean values for the selected bands (SR_B6, SR_B5, SR_B4) of the highest NDVI pixels.\u003c/p\u003e\n"]]],["The process involves sorting Landsat 8 images by NDVI to create a custom mosaic. First, a function prepares images by scaling, masking, and calculating NDVI. Then, a collection of images is filtered by location and date range, transformed into an array, and sorted by descending NDVI values. The top 20% of NDVI observations are isolated. Finally, the mean of these top observations is calculated and transformed into a multi-band image for display.\n"],null,["# Array Sorting and Reducing\n\nArray sorting is useful for obtaining custom quality mosaics which involve reducing a\nsubset of image bands according to the values in a different band. The following example\nsorts by NDVI, then gets the mean of a subset of observations in the collection with the\nhighest NDVI values:\n\n### Code Editor (JavaScript)\n\n```javascript\n// Define a function that scales and masks Landsat 8 surface reflectance images\n// and adds an NDVI band.\nfunction prepSrL8(image) {\n // Develop masks for unwanted pixels (fill, cloud, cloud shadow).\n var qaMask = image.select('QA_PIXEL').bitwiseAnd(parseInt('11111', 2)).eq(0);\n var saturationMask = image.select('QA_RADSAT').eq(0);\n\n // Apply the scaling factors to the appropriate bands.\n var opticalBands = image.select('SR_B.').multiply(0.0000275).add(-0.2);\n var thermalBands = image.select('ST_B.*').multiply(0.00341802).add(149.0);\n\n // Calculate NDVI.\n var ndvi = opticalBands.normalizedDifference(['SR_B5', 'SR_B4'])\n .rename('NDVI');\n\n // Replace original bands with scaled bands, add NDVI band, and apply masks.\n return image.addBands(opticalBands, null, true)\n .addBands(thermalBands, null, true)\n .addBands(ndvi)\n .updateMask(qaMask)\n .updateMask(saturationMask);\n}\n\n// Define an arbitrary region of interest as a point.\nvar roi = ee.Geometry.Point(-122.26032, 37.87187);\n\n// Load a Landsat 8 surface reflectance collection.\nvar collection = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')\n // Filter to get only imagery at a point of interest.\n .filterBounds(roi)\n // Filter to get only six months of data.\n .filterDate('2021-01-01', '2021-07-01')\n // Prepare images by mapping the prepSrL8 function over the collection.\n .map(prepSrL8)\n // Select the bands of interest to avoid taking up unneeded memory.\n .select('SR_B.|NDVI');\n\n// Convert the collection to an array.\nvar array = collection.toArray();\n\n// Label of the axes.\nvar imageAxis = 0;\nvar bandAxis = 1;\n\n// Get the NDVI slice and the bands of interest.\nvar bandNames = collection.first().bandNames();\nvar bands = array.arraySlice(bandAxis, 0, bandNames.length());\nvar ndvi = array.arraySlice(bandAxis, -1);\n\n// Sort by descending NDVI.\nvar sorted = bands.arraySort(ndvi.multiply(-1));\n\n// Get the highest 20% NDVI observations per pixel.\nvar numImages = sorted.arrayLength(imageAxis).multiply(0.2).int();\nvar highestNdvi = sorted.arraySlice(imageAxis, 0, numImages);\n\n// Get the mean of the highest 20% NDVI observations by reducing\n// along the image axis.\nvar mean = highestNdvi.arrayReduce({\n reducer: ee.Reducer.mean(),\n axes: [imageAxis]\n});\n\n// Turn the reduced array image into a multi-band image for display.\nvar meanImage = mean.arrayProject([bandAxis]).arrayFlatten([bandNames]);\nMap.centerObject(roi, 12);\nMap.addLayer(meanImage, {bands: ['SR_B6', 'SR_B5', 'SR_B4'], min: 0, max: 0.4});\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Define a function that scales and masks Landsat 8 surface reflectance images\n# and adds an NDVI band.\ndef prep_sr_l8(image):\n # Develop masks for unwanted pixels (fill, cloud, cloud shadow).\n qa_mask = image.select('QA_PIXEL').bitwiseAnd(int('11111', 2)).eq(0)\n saturation_mask = image.select('QA_RADSAT').eq(0)\n\n # Apply the scaling factors to the appropriate bands.\n optical_bands = image.select('SR_B.').multiply(0.0000275).add(-0.2)\n thermal_bands = image.select('ST_B.*').multiply(0.00341802).add(149.0)\n\n # Calculate NDVI.\n ndvi = optical_bands.normalizedDifference(['SR_B5', 'SR_B4']).rename('NDVI')\n\n # Replace the original bands with the scaled ones and apply the masks.\n return (\n image.addBands(optical_bands, None, True)\n .addBands(thermal_bands, None, True)\n .addBands(ndvi)\n .updateMask(qa_mask)\n .updateMask(saturation_mask)\n )\n\n\n# Define an arbitrary region of interest as a point.\nroi = ee.Geometry.Point(-122.26032, 37.87187)\n\n# Load a Landsat 8 surface reflectance collection.\ncollection = (\n ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')\n # Filter to get only imagery at a point of interest.\n .filterBounds(roi)\n # Filter to get only six months of data.\n .filterDate('2021-01-01', '2021-07-01')\n # Prepare images by mapping the prep_sr_l8 function over the collection.\n .map(prep_sr_l8)\n # Select the bands of interest to avoid taking up unneeded memory.\n .select('SR_B.|NDVI')\n)\n\n# Convert the collection to an array.\narray = collection.toArray()\n\n# Label of the axes.\nimage_axis = 0\nband_axis = 1\n\n# Get the NDVI slice and the bands of interest.\nband_names = collection.first().bandNames()\nbands = array.arraySlice(band_axis, 0, band_names.length())\nndvi = array.arraySlice(band_axis, -1)\n\n# Sort by descending NDVI.\nsorted = bands.arraySort(ndvi.multiply(-1))\n\n# Get the highest 20% NDVI observations per pixel.\nnum_images = sorted.arrayLength(image_axis).multiply(0.2).int()\nhighest_ndvi = sorted.arraySlice(image_axis, 0, num_images)\n\n# Get the mean of the highest 20% NDVI observations by reducing\n# along the image axis.\nmean = highest_ndvi.arrayReduce(reducer=ee.Reducer.mean(), axes=[image_axis])\n\n# Turn the reduced array image into a multi-band image for display.\nmean_image = mean.arrayProject([band_axis]).arrayFlatten([band_names])\nm = geemap.Map()\nm.center_object(roi, 12)\nm.add_layer(\n mean_image, {'bands': ['SR_B6', 'SR_B5', 'SR_B4'], 'min': 0, 'max': 0.4}\n)\nm\n```\n\nAs in the linear modeling example, separate the bands of interest from the sort index (NDVI)\nusing `arraySlice()` along the band axis. Then sort the bands of interest by\nsort index using `arraySort()`. After the pixels have been sorted by\ndescending NDVI, use `arraySlice()` along the `imageAxis` to\nget 20% of the highest NDVI pixels. Lastly, apply `arrayReduce()` along the\n`imageAxis` with a mean reducer to get the mean of the highest NDVI\npixels. The final step converts the array image back to a multi-band image for display."]]