Como exportar dados de tabelas e vetores

É possível exportar um FeatureCollection como CSV, SHP (shapefile), GeoJSON, KML, KMZ ou TFRecord usando Export.table. O FeatureCollection pode representar vetores ou simplesmente uma tabela de dados. Nesse último caso, os elementos na coleção terão geometria nula.

Observe algumas restrições adicionais ao trabalhar com alguns formatos de arquivo, incluindo:

  • KML: um FeatureCollection exportado para um arquivo KML terá todas as geometrias transformadas em coordenadas não projetadas (WGS84).
  • SHP: um FeatureCollection exportado para um shapefile precisa conter elementos com o mesmo tipo de geometria e projeção e se encaixar nos limites de tamanho do shapefile. Os nomes de colunas são truncados para 10 caracteres ou menos e não podem criar nomes de colunas duplicados.
  • TFRecord: consulte esta página.

para o Cloud Storage

Para exportar um FeatureCollection para o Cloud Storage, use Export.table.toCloudStorage(). Por exemplo, usando o features definido anteriormente:

Editor de código (JavaScript)

// Make a collection of points.
var features = ee.FeatureCollection([
  ee.Feature(ee.Geometry.Point(30.41, 59.933), {name: 'Voronoi'}),
  ee.Feature(ee.Geometry.Point(-73.96, 40.781), {name: 'Thiessen'}),
  ee.Feature(ee.Geometry.Point(6.4806, 50.8012), {name: 'Dirichlet'})
]);

// Export a KML file to Cloud Storage.
Export.table.toCloudStorage({
  collection: features,
  description:'vectorsToCloudStorageExample',
  bucket: 'your-bucket-name',
  fileNamePrefix: 'exampleTableExport',
  fileFormat: 'KML'
});

Configuração do Python

Consulte a página Ambiente Python para informações sobre a API Python e o uso de geemap para desenvolvimento interativo.

import ee
import geemap.core as geemap

Colab (Python)

# Make a collection of points.
features = ee.FeatureCollection([
    ee.Feature(ee.Geometry.Point(30.41, 59.933), {'name': 'Voronoi'}),
    ee.Feature(ee.Geometry.Point(-73.96, 40.781), {'name': 'Thiessen'}),
    ee.Feature(ee.Geometry.Point(6.4806, 50.8012), {'name': 'Dirichlet'}),
])

# Export a KML file to Cloud Storage.
task = ee.batch.Export.table.toCloudStorage(
    collection=features,
    description='vectorsToCloudStorageExample',
    bucket='your-bucket-name',
    fileNamePrefix='exampleTableExport',
    fileFormat='KML',
)
task.start()

para "Recurso"

Para exportar um FeatureCollection como um recurso do Earth Engine, use Export.table.toAsset(). Por exemplo, usando o features definido anteriormente:

Editor de código (JavaScript)

// Export an ee.FeatureCollection as an Earth Engine asset.
Export.table.toAsset({
  collection: features,
  description:'exportToTableAssetExample',
  assetId: 'exampleAssetId',
});

Configuração do Python

Consulte a página Ambiente Python para informações sobre a API Python e o uso de geemap para desenvolvimento interativo.

import ee
import geemap.core as geemap

Colab (Python)

# Export an ee.FeatureCollection as an Earth Engine asset.
task = ee.batch.Export.table.toAsset(
    collection=features,
    description='exportToTableAssetExample',
    assetId='projects/your-project/assets/exampleAssetId',
)
task.start()

Há várias limitações no tamanho e na forma dos recursos de tabela do Earth Engine:

  • Máximo de 100 milhões de recursos
  • Máximo de 1.000 propriedades (colunas)
  • Máximo de 100.000 vértices para a geometria de cada linha
  • Máximo de 100.000 caracteres por valor de string

para o BigQuery

É possível exportar um FeatureCollection para uma tabela do BigQuery usando Export.table.toBigQuery(). Assim, é possível integrar seus dados do Earth Engine a outros dados e ferramentas disponíveis no BigQuery. Para mais informações, consulte o guia de exportação para o BigQuery.

Editor de código (JavaScript)

Export.table.toBigQuery({
  collection: features,
  table: 'myproject.mydataset.mytable',
  description: 'put_my_data_in_bigquery',
  append: true,
  overwrite: false
});

Configuração do Python

Consulte a página Ambiente Python para informações sobre a API Python e o uso de geemap para desenvolvimento interativo.

import ee
import geemap.core as geemap

Colab (Python)

task = ee.batch.Export.table.toBigQuery(
    collection=features,
    table='myproject.mydataset.mytable',
    description='put_my_data_in_bigquery',
    append=True,
    overwrite=False,
)
task.start()

para o Drive

Para exportar um FeatureCollection para sua conta do Drive, use Export.table.toDrive(). Exemplo:

Editor de código (JavaScript)

// Export the FeatureCollection to a KML file.
Export.table.toDrive({
  collection: features,
  description:'vectorsToDriveExample',
  fileFormat: 'KML'
});

Configuração do Python

Consulte a página Ambiente Python para informações sobre a API Python e o uso de geemap para desenvolvimento interativo.

import ee
import geemap.core as geemap

Colab (Python)

# Export the FeatureCollection to a KML file.
task = ee.batch.Export.table.toDrive(
    collection=features, description='vectorsToDriveExample', fileFormat='KML'
)
task.start()

O formato de saída é especificado como KML para processar dados geográficos. O SHP também é adequado para exportar uma tabela com geometria. Para exportar apenas uma tabela de dados, sem informações geográficas, exporte elementos com geometria nula no formato CSV. O exemplo a seguir demonstra o uso de Export.table.toDrive() para receber os resultados de uma redução potencialmente demorada:

Editor de código (JavaScript)

// Load a Landsat image.
var image = ee.Image('LANDSAT/LC08/C02/T1_TOA/LC08_044034_20140318');
var projection = image.select('B2').projection().getInfo();

// Create an arbitrary rectangle.
var region = ee.Geometry.Rectangle(-122.2806, 37.1209, -122.0554, 37.2413);

// Get a dictionary of means in the region.
var means = image.reduceRegion({
  reducer: ee.Reducer.mean(),
  geometry: region,
  crs: projection.crs,
  crsTransform: projection.transform,
});

// Make a feature without geometry and set the properties to the dictionary of means.
var feature = ee.Feature(null, means);

// Wrap the Feature in a FeatureCollection for export.
var featureCollection = ee.FeatureCollection([feature]);

// Export the FeatureCollection.
Export.table.toDrive({
  collection: featureCollection,
  description: 'exportTableExample',
  fileFormat: 'CSV'
});

Configuração do Python

Consulte a página Ambiente Python para informações sobre a API Python e o uso de geemap para desenvolvimento interativo.

import ee
import geemap.core as geemap

Colab (Python)

# Load a Landsat image.
image = ee.Image('LANDSAT/LC08/C02/T1_TOA/LC08_044034_20140318')
projection = image.select('B2').projection().getInfo()

# Create an arbitrary rectangle.
region = ee.Geometry.Rectangle(-122.2806, 37.1209, -122.0554, 37.2413)

# Get a dictionary of means in the region.
means = image.reduceRegion(
    reducer=ee.Reducer.mean(),
    geometry=region,
    crs=projection['crs'],
    crsTransform=projection['transform'],
)

# Make a feature without geometry and set the properties to the dictionary of means.
feature = ee.Feature(None, means)

# Wrap the Feature in a FeatureCollection for export.
feature_collection = ee.FeatureCollection([feature])

# Export the FeatureCollection.
task = ee.batch.Export.table.toDrive(
    collection=feature_collection,
    description='exportTableExample',
    fileFormat='CSV',
)
task.start()

O formato está definido como "CSV" neste exemplo, já que não há geometria na saída.