Reduzir uma FeatureCollection

Para agregar dados nas propriedades de um FeatureCollection, use featureCollection.reduceColumns(). Por exemplo, para verificar as propriedades de área nas bacias hidrográficas FeatureCollection, este código calcula o erro quadrático médio (RMSE) em relação à área computada do Earth Engine:

Editor de código (JavaScript)

// Load watersheds from a data table and filter to the continental US.
var sheds = ee.FeatureCollection('USGS/WBD/2017/HUC06')
  .filterBounds(ee.Geometry.Rectangle(-127.18, 19.39, -62.75, 51.29));

// This function computes the squared difference between an area property
// and area computed directly from the feature's geometry.
var areaDiff = function(feature) {
  // Compute area in sq. km directly from the geometry.
  var area = feature.geometry().area().divide(1000 * 1000);
  // Compute the difference between computed area and the area property.
  var diff = area.subtract(ee.Number.parse(feature.get('areasqkm')));
  // Return the feature with the squared difference set to the 'diff' property.
  return feature.set('diff', diff.pow(2));
};

// Calculate RMSE for population of difference pairs.
var rmse = ee.Number(
  // Map the difference function over the collection.
  sheds.map(areaDiff)
  // Reduce to get the mean squared difference.
  .reduceColumns(ee.Reducer.mean(), ['diff'])
  .get('mean')
)
// Compute the square root of the mean square to get RMSE.
.sqrt();

// Print the result.
print('RMSE=', rmse);

Configuração do Python

Consulte a página Ambiente Python para informações sobre a API Python e o uso de geemap para desenvolvimento interativo.

import ee
import geemap.core as geemap

Colab (Python)

# Load watersheds from a data table and filter to the continental US.
sheds = ee.FeatureCollection('USGS/WBD/2017/HUC06').filterBounds(
    ee.Geometry.Rectangle(-127.18, 19.39, -62.75, 51.29)
)

# This function computes the squared difference between an area property
# and area computed directly from the feature's geometry.
def area_diff(feature):
  # Compute area in sq. km directly from the geometry.
  area = feature.geometry().area().divide(1000 * 1000)
  # Compute the difference between computed area and the area property.
  diff = area.subtract(ee.Number.parse(feature.get('areasqkm')))
  # Return the feature with the squared difference set to the 'diff' property.
  return feature.set('diff', diff.pow(2))

# Calculate RMSE for population of difference pairs.
rmse = (
    ee.Number(
        # Map the difference function over the collection.
        sheds.map(area_diff)
        # Reduce to get the mean squared difference.
        .reduceColumns(ee.Reducer.mean(), ['diff']).get('mean')
    )
    # Compute the square root of the mean square to get RMSE.
    .sqrt()
)

# Print the result.
display('RMSE=', rmse)

Neste exemplo, o valor de retorno de reduceColumns() é um dicionário com a chave ‘mean’. Para calcular a média, converta o resultado de dictionary.get() em um número com ee.Number() antes de tentar chamar sqrt() nele. Para mais informações sobre estruturas de dados auxiliares no Earth Engine, consulte este tutorial.

Para sobrepor elementos em imagens, use featureCollection.reduceRegions(). Por exemplo, para calcular o volume de precipitação nas bacias hidrográficas continentais dos EUA, use reduceRegions() seguido por um map():

Editor de código (JavaScript)

// Load an image of daily precipitation in mm/day.
var precip = ee.Image(ee.ImageCollection('NASA/ORNL/DAYMET_V3').first());

// Load watersheds from a data table and filter to the continental US.
var sheds = ee.FeatureCollection('USGS/WBD/2017/HUC06')
  .filterBounds(ee.Geometry.Rectangle(-127.18, 19.39, -62.75, 51.29));

// Add the mean of each image as new properties of each feature.
var withPrecip = precip.reduceRegions(sheds, ee.Reducer.mean())
  .filter(ee.Filter.notNull(['prcp']));

// This function computes total rainfall in cubic meters.
var prcpVolume = function(feature) {
  // Precipitation in mm/day -> meters -> sq. meters.
  var volume = ee.Number(feature.get('prcp'))
    .divide(1000).multiply(feature.geometry().area());
  return feature.set('volume', volume);
};

var highVolume = withPrecip
  // Map the function over the collection.
  .map(prcpVolume)
  // Sort descending.
  .sort('volume', false)
  // Get only the 5 highest volume watersheds.
  .limit(5)
  // Extract the names to a list.
  .reduceColumns(ee.Reducer.toList(), ['name']).get('list');

// Print the resulting FeatureCollection.
print(highVolume);

Configuração do Python

Consulte a página Ambiente Python para informações sobre a API Python e o uso de geemap para desenvolvimento interativo.

import ee
import geemap.core as geemap

Colab (Python)

# Load an image of daily precipitation in mm/day.
precip = ee.Image(ee.ImageCollection('NASA/ORNL/DAYMET_V3').first())

# Load watersheds from a data table and filter to the continental US.
sheds = ee.FeatureCollection('USGS/WBD/2017/HUC06').filterBounds(
    ee.Geometry.Rectangle(-127.18, 19.39, -62.75, 51.29)
)

# Add the mean of each image as new properties of each feature.
with_precip = precip.reduceRegions(sheds, ee.Reducer.mean()).filter(
    ee.Filter.notNull(['prcp'])
)


# This function computes total rainfall in cubic meters.
def prcp_volume(feature):
  # Precipitation in mm/day -> meters -> sq. meters.
  volume = (
      ee.Number(feature.get('prcp'))
      .divide(1000)
      .multiply(feature.geometry().area())
  )
  return feature.set('volume', volume)

high_volume = (
    # Map the function over the collection.
    with_precip.map(prcp_volume)
    # Sort descending and get only the 5 highest volume watersheds.
    .sort('volume', False).limit(5)
    # Extract the names to a list.
    .reduceColumns(ee.Reducer.toList(), ['name']).get('list')
)

# Print the resulting FeatureCollection.
display(high_volume)

Para mais informações sobre como reduzir coleções de elementos, consulte Estatísticas das colunas de FeatureCollection e Conversão de vetor para raster.