שילוב ויצירת פסיפס

באופן כללי, עיבוד קומפוזיציה מתייחס לתהליך של שילוב תמונות חופפות מבחינה מרחבית לתמונה אחת על סמך פונקציית צבירת נתונים. מוזיקת' מתייחסת לתהליך של הרכבת מרחבית של מערכי נתונים של תמונות כדי ליצור תמונה רציפה מבחינה מרחבית. ב-Earth Engine, המונחים האלה משמשים לסירוגין, אבל יש תמיכה גם ביצירת קומפוזיציות וגם ביצירת פסיפס. לדוגמה, נניח שאתם רוצים ליצור קומפוזיציה של כמה תמונות באותו מיקום. לדוגמה, באמצעות תמונה אחת של רבעון ריבועי אורתופוטוגרפית דיגיטלית (DOQQ) של תוכנית התמונות הלאומית לחקלאות (NAIP) בזמנים שונים, הדוגמה הבאה ממחישה איך יוצרים תמונה מורכבת של הערך המקסימלי:

Code Editor‏ (JavaScript)

// Load three NAIP quarter quads in the same location, different times.
var naip2004_2012 = ee.ImageCollection('USDA/NAIP/DOQQ')
  .filterBounds(ee.Geometry.Point(-71.08841, 42.39823))
  .filterDate('2004-07-01', '2012-12-31')
  .select(['R', 'G', 'B']);

// Temporally composite the images with a maximum value function.
var composite = naip2004_2012.max();
Map.setCenter(-71.12532, 42.3712, 12);
Map.addLayer(composite, {}, 'max value composite');

הגדרת Python

בדף סביבת Python מפורט מידע על Python API ועל השימוש ב-geemap לפיתוח אינטראקטיבי.

import ee
import geemap.core as geemap

Colab (Python)

# Load three NAIP quarter quads in the same location, different times.
naip_2004_2012 = (
    ee.ImageCollection('USDA/NAIP/DOQQ')
    .filterBounds(ee.Geometry.Point(-71.08841, 42.39823))
    .filterDate('2004-07-01', '2012-12-31')
    .select(['R', 'G', 'B'])
)

# Temporally composite the images with a maximum value function.
composite = naip_2004_2012.max()
m.set_center(-71.12532, 42.3712, 12)
m.add_layer(composite, {}, 'max value composite')
m

נניח שצריך ליצור פסיפס של ארבע תמונות DOQQ שונות בו-זמנית, אבל במיקומים שונים. בדוגמה הבאה אפשר לראות שבעזרת imageCollection.mosaic():

Code Editor‏ (JavaScript)

// Load four 2012 NAIP quarter quads, different locations.
var naip2012 = ee.ImageCollection('USDA/NAIP/DOQQ')
  .filterBounds(ee.Geometry.Rectangle(-71.17965, 42.35125, -71.08824, 42.40584))
  .filterDate('2012-01-01', '2012-12-31');

// Spatially mosaic the images in the collection and display.
var mosaic = naip2012.mosaic();
Map.setCenter(-71.12532, 42.3712, 12);
Map.addLayer(mosaic, {}, 'spatial mosaic');

הגדרת Python

בדף סביבת Python מפורט מידע על Python API ועל השימוש ב-geemap לפיתוח אינטראקטיבי.

import ee
import geemap.core as geemap

Colab (Python)

# Load four 2012 NAIP quarter quads, different locations.
naip_2012 = (
    ee.ImageCollection('USDA/NAIP/DOQQ')
    .filterBounds(
        ee.Geometry.Rectangle(-71.17965, 42.35125, -71.08824, 42.40584)
    )
    .filterDate('2012-01-01', '2012-12-31')
)

# Spatially mosaic the images in the collection and display.
mosaic = naip_2012.mosaic()
m = geemap.Map()
m.set_center(-71.12532, 42.3712, 12)
m.add_layer(mosaic, {}, 'spatial mosaic')

שימו לב שיש חפיפה מסוימת ב-DOQQs בדוגמה הקודמת. השיטה mosaic() יוצרת תמונה מורכבת של תמונות חופפות לפי הסדר שלהן באוסף (האחרונה בחלק העליון). כדי לשלוט במקור של הפיקסלים במוזאיקה (או בתמונה המשולבת), משתמשים במסכות תמונה. לדוגמה, בקוד הבא נעשה שימוש בערכים סף במדדים הספקטרליים כדי להסתיר את נתוני התמונה במוזאיקה:

Code Editor‏ (JavaScript)

// Load a NAIP quarter quad, display.
var naip = ee.Image('USDA/NAIP/DOQQ/m_4207148_nw_19_1_20120710');
Map.setCenter(-71.0915, 42.3443, 14);
Map.addLayer(naip, {}, 'NAIP DOQQ');

// Create the NDVI and NDWI spectral indices.
var ndvi = naip.normalizedDifference(['N', 'R']);
var ndwi = naip.normalizedDifference(['G', 'N']);

// Create some binary images from thresholds on the indices.
// This threshold is designed to detect bare land.
var bare1 = ndvi.lt(0.2).and(ndwi.lt(0.3));
// This detects bare land with lower sensitivity. It also detects shadows.
var bare2 = ndvi.lt(0.2).and(ndwi.lt(0.8));

// Define visualization parameters for the spectral indices.
var ndviViz = {min: -1, max: 1, palette: ['FF0000', '00FF00']};
var ndwiViz = {min: 0.5, max: 1, palette: ['00FFFF', '0000FF']};

// Mask and mosaic visualization images.  The last layer is on top.
var mosaic = ee.ImageCollection([
  // NDWI > 0.5 is water.  Visualize it with a blue palette.
  ndwi.updateMask(ndwi.gte(0.5)).visualize(ndwiViz),
  // NDVI > 0.2 is vegetation.  Visualize it with a green palette.
  ndvi.updateMask(ndvi.gte(0.2)).visualize(ndviViz),
  // Visualize bare areas with shadow (bare2 but not bare1) as gray.
  bare2.updateMask(bare2.and(bare1.not())).visualize({palette: ['AAAAAA']}),
  // Visualize the other bare areas as white.
  bare1.updateMask(bare1).visualize({palette: ['FFFFFF']}),
]).mosaic();
Map.addLayer(mosaic, {}, 'Visualization mosaic');

הגדרת Python

בדף סביבת Python מפורט מידע על Python API ועל השימוש ב-geemap לפיתוח אינטראקטיבי.

import ee
import geemap.core as geemap

Colab (Python)

# Load a NAIP quarter quad, display.
naip = ee.Image('USDA/NAIP/DOQQ/m_4207148_nw_19_1_20120710')
m = geemap.Map()
m.set_center(-71.0915, 42.3443, 14)
m.add_layer(naip, {}, 'NAIP DOQQ')

# Create the NDVI and NDWI spectral indices.
ndvi = naip.normalizedDifference(['N', 'R'])
ndwi = naip.normalizedDifference(['G', 'N'])

# Create some binary images from thresholds on the indices.
# This threshold is designed to detect bare land.
bare_1 = ndvi.lt(0.2).And(ndwi.lt(0.3))
# This detects bare land with lower sensitivity. It also detects shadows.
bare_2 = ndvi.lt(0.2).And(ndwi.lt(0.8))

# Mask and mosaic visualization images. The last layer is on top.
mosaic = ee.ImageCollection([
    # NDWI > 0.5 is water. Visualize it with a blue palette.
    ndwi.updateMask(ndwi.gte(0.5)).visualize(
        min=0.5, max=1, palette=['00FFFF', '0000FF']
    ),
    # NDVI > 0.2 is vegetation. Visualize it with a green palette.
    ndvi.updateMask(ndvi.gte(0.2)).visualize(
        min=-1, max=1, palette=['FF0000', '00FF00']
    ),
    # Visualize bare areas with shadow (bare_2 but not bare_1) as gray.
    bare_2.updateMask(bare_2.And(bare_1.Not())).visualize(palette=['AAAAAA']),
    # Visualize the other bare areas as white.
    bare_1.updateMask(bare_1).visualize(palette=['FFFFFF']),
]).mosaic()
m.add_layer(mosaic, {}, 'Visualization mosaic')
m

כדי ליצור רכיב מורכב שממקסם פס שרירותי בקלט, משתמשים ב-imageCollection.qualityMosaic(). השיטה qualityMosaic() מגדירה כל פיקסל בתמונה המשולבת על סמך התמונה באוסף שיש לה ערך מקסימלי בתחום שצוין. לדוגמה, הקוד הבא מראה איך יוצרים קומפוזיט של הפיקסל הכי ירוק וקומפוזיט של ערך עדכני:

Code Editor‏ (JavaScript)

// Define a function that scales and masks Landsat 8 surface reflectance images.
function prepSrL8(image) {
  // Develop masks for unwanted pixels (fill, cloud, cloud shadow).
  var qaMask = image.select('QA_PIXEL').bitwiseAnd(parseInt('11111', 2)).eq(0);
  var saturationMask = image.select('QA_RADSAT').eq(0);

  // Apply the scaling factors to the appropriate bands.
  var getFactorImg = function(factorNames) {
    var factorList = image.toDictionary().select(factorNames).values();
    return ee.Image.constant(factorList);
  };
  var scaleImg = getFactorImg([
    'REFLECTANCE_MULT_BAND_.|TEMPERATURE_MULT_BAND_ST_B10']);
  var offsetImg = getFactorImg([
    'REFLECTANCE_ADD_BAND_.|TEMPERATURE_ADD_BAND_ST_B10']);
  var scaled = image.select('SR_B.|ST_B10').multiply(scaleImg).add(offsetImg);

  // Replace original bands with scaled bands and apply masks.
  return image.addBands(scaled, null, true)
    .updateMask(qaMask).updateMask(saturationMask);
}

// This function masks clouds and adds quality bands to Landsat 8 images.
var addQualityBands = function(image) {
  // Normalized difference vegetation index.
  var ndvi = image.normalizedDifference(['SR_B5', 'SR_B4']);
  // Image timestamp as milliseconds since Unix epoch.
  var millis = ee.Image(image.getNumber('system:time_start'))
                   .rename('millis').toFloat();
  return prepSrL8(image).addBands([ndvi, millis]);
};

// Load a 2014 Landsat 8 ImageCollection.
// Map the cloud masking and quality band function over the collection.
var collection = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')
  .filterDate('2014-06-01', '2014-12-31')
  .map(addQualityBands);

// Create a cloud-free, most recent value composite.
var recentValueComposite = collection.qualityMosaic('millis');

// Create a greenest pixel composite.
var greenestPixelComposite = collection.qualityMosaic('nd');

// Display the results.
Map.setCenter(-122.374, 37.8239, 12); // San Francisco Bay
var vizParams = {bands: ['SR_B5', 'SR_B4', 'SR_B3'], min: 0, max: 0.4};
Map.addLayer(recentValueComposite, vizParams, 'Recent value composite');
Map.addLayer(greenestPixelComposite, vizParams, 'Greenest pixel composite');

// Compare to a cloudy image in the collection.
var cloudy = ee.Image('LANDSAT/LC08/C02/T1_TOA/LC08_044034_20140825');
Map.addLayer(cloudy, {bands: ['B5', 'B4', 'B3'], min: 0, max: 0.4}, 'Cloudy');

הגדרת Python

בדף סביבת Python מפורט מידע על Python API ועל השימוש ב-geemap לפיתוח אינטראקטיבי.

import ee
import geemap.core as geemap

Colab (Python)

# Define a function that scales and masks Landsat 8 surface reflectance images.
def prep_sr_l8(image):
  # Develop masks for unwanted pixels (fill, cloud, cloud shadow).
  qa_mask = image.select('QA_PIXEL').bitwiseAnd(int('11111', 2)).eq(0)
  saturation_mask = image.select('QA_RADSAT').eq(0)

  # Helper function to create image from scaling factors.
  def get_factor_img(factor_names):
    factor_list = image.toDictionary().select(factor_names).values()
    return ee.Image.constant(factor_list)

  # Apply the scaling factors to the appropriate bands.
  scale_img = get_factor_img(
      ['REFLECTANCE_MULT_BAND_.|TEMPERATURE_MULT_BAND_ST_B10']
  )
  offset_img = get_factor_img(
      ['REFLECTANCE_ADD_BAND_.|TEMPERATURE_ADD_BAND_ST_B10']
  )
  scaled = image.select('SR_B.|ST_B10').multiply(scale_img).add(offset_img)

  # Replace original bands with scaled bands and apply masks.
  return (
      image.addBands(scaled, None, True)
      .updateMask(qa_mask)
      .updateMask(saturation_mask)
  )


# This function masks clouds and adds quality bands to Landsat 8 images.
def add_quality_bands(image):
  # Normalized difference vegetation index.
  ndvi = image.normalizedDifference(['SR_B5', 'SR_B4'])
  # Image timestamp as milliseconds since Unix epoch.
  millis = (
      ee.Image(image.getNumber('system:time_start')).rename('millis').toFloat()
  )
  return prep_sr_l8(image).addBands([ndvi, millis])


# Load a 2014 Landsat 8 ImageCollection.
# Map the cloud masking and quality band function over the collection.
collection = (
    ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')
    .filterDate('2014-06-01', '2014-12-31')
    .map(add_quality_bands)
)

# Create a cloud-free, most recent value composite.
recent_value_composite = collection.qualityMosaic('millis')

# Create a greenest pixel composite.
greenest_pixel_composite = collection.qualityMosaic('nd')

# Display the results.
m = geemap.Map()
m.set_center(-122.374, 37.8239, 12)  # San Francisco Bay
viz_params = {'bands': ['SR_B5', 'SR_B4', 'SR_B3'], 'min': 0, 'max': 0.4}
m.add_layer(recent_value_composite, viz_params, 'Recent value composite')
m.add_layer(greenest_pixel_composite, viz_params, 'Greenest pixel composite')

# Compare to a cloudy image in the collection.
cloudy = ee.Image('LANDSAT/LC08/C02/T1_TOA/LC08_044034_20140825')
m.add_layer(
    cloudy, {'bands': ['B5', 'B4', 'B3'], 'min': 0, 'max': 0.4}, 'Cloudy'
)
m

אפשר להשתמש בכלי הבדיקה כדי לבדוק את ערכי הפיקסלים במיקומים שונים בתמונות המשולבות. שימו לב שהפס millis (חותמת הזמן) משתנה בהתאם למיקום, ומצביע על כך שפיקסלים שונים מגיעים מזמנים שונים.