Em geral, a composição se refere ao processo de combinação de imagens sobrepostas espacialmente em uma única imagem com base em uma função de agregação. O mosaico se refere ao processo de montagem espacial de conjuntos de dados de imagens para produzir uma imagem espacialmente contínua. No Earth Engine, esses termos são usados de forma intercambiável, embora a composição e a criação de mosaicos sejam compatíveis. Por exemplo, considere a tarefa de compor várias imagens no mesmo local. Por exemplo, usando um programa de imagens agrícolas nacional (NAIP, na sigla em inglês) e um quadrante de ortofoto digital (DOQQ, na sigla em inglês) em momentos diferentes, o exemplo a seguir demonstra como fazer uma composição de valor máximo:
Editor de código (JavaScript)
// Load three NAIP quarter quads in the same location, different times. var naip2004_2012 = ee.ImageCollection('USDA/NAIP/DOQQ') .filterBounds(ee.Geometry.Point(-71.08841, 42.39823)) .filterDate('2004-07-01', '2012-12-31') .select(['R', 'G', 'B']); // Temporally composite the images with a maximum value function. var composite = naip2004_2012.max(); Map.setCenter(-71.12532, 42.3712, 12); Map.addLayer(composite, {}, 'max value composite');
import ee import geemap.core as geemap
Colab (Python)
# Load three NAIP quarter quads in the same location, different times. naip_2004_2012 = ( ee.ImageCollection('USDA/NAIP/DOQQ') .filterBounds(ee.Geometry.Point(-71.08841, 42.39823)) .filterDate('2004-07-01', '2012-12-31') .select(['R', 'G', 'B']) ) # Temporally composite the images with a maximum value function. composite = naip_2004_2012.max() m.set_center(-71.12532, 42.3712, 12) m.add_layer(composite, {}, 'max value composite') m
Considere a necessidade de mesclar quatro DOQQs diferentes ao mesmo tempo, mas em locais diferentes. O exemplo a seguir demonstra que o uso de
imageCollection.mosaic()
:
Editor de código (JavaScript)
// Load four 2012 NAIP quarter quads, different locations. var naip2012 = ee.ImageCollection('USDA/NAIP/DOQQ') .filterBounds(ee.Geometry.Rectangle(-71.17965, 42.35125, -71.08824, 42.40584)) .filterDate('2012-01-01', '2012-12-31'); // Spatially mosaic the images in the collection and display. var mosaic = naip2012.mosaic(); Map.setCenter(-71.12532, 42.3712, 12); Map.addLayer(mosaic, {}, 'spatial mosaic');
import ee import geemap.core as geemap
Colab (Python)
# Load four 2012 NAIP quarter quads, different locations. naip_2012 = ( ee.ImageCollection('USDA/NAIP/DOQQ') .filterBounds( ee.Geometry.Rectangle(-71.17965, 42.35125, -71.08824, 42.40584) ) .filterDate('2012-01-01', '2012-12-31') ) # Spatially mosaic the images in the collection and display. mosaic = naip_2012.mosaic() m = geemap.Map() m.set_center(-71.12532, 42.3712, 12) m.add_layer(mosaic, {}, 'spatial mosaic')
Há alguma sobreposição nas perguntas frequentes do exemplo anterior. O
método mosaic()
compõe imagens sobrepostas de acordo
com a ordem delas na coleção (a última fica em cima). Para controlar a origem dos pixels em um
mosaico (ou uma composição), use máscaras de imagem. Por exemplo, o exemplo a seguir usa limites em índices espectrais para mascarar os dados de imagem em um mosaico:
Editor de código (JavaScript)
// Load a NAIP quarter quad, display. var naip = ee.Image('USDA/NAIP/DOQQ/m_4207148_nw_19_1_20120710'); Map.setCenter(-71.0915, 42.3443, 14); Map.addLayer(naip, {}, 'NAIP DOQQ'); // Create the NDVI and NDWI spectral indices. var ndvi = naip.normalizedDifference(['N', 'R']); var ndwi = naip.normalizedDifference(['G', 'N']); // Create some binary images from thresholds on the indices. // This threshold is designed to detect bare land. var bare1 = ndvi.lt(0.2).and(ndwi.lt(0.3)); // This detects bare land with lower sensitivity. It also detects shadows. var bare2 = ndvi.lt(0.2).and(ndwi.lt(0.8)); // Define visualization parameters for the spectral indices. var ndviViz = {min: -1, max: 1, palette: ['FF0000', '00FF00']}; var ndwiViz = {min: 0.5, max: 1, palette: ['00FFFF', '0000FF']}; // Mask and mosaic visualization images. The last layer is on top. var mosaic = ee.ImageCollection([ // NDWI > 0.5 is water. Visualize it with a blue palette. ndwi.updateMask(ndwi.gte(0.5)).visualize(ndwiViz), // NDVI > 0.2 is vegetation. Visualize it with a green palette. ndvi.updateMask(ndvi.gte(0.2)).visualize(ndviViz), // Visualize bare areas with shadow (bare2 but not bare1) as gray. bare2.updateMask(bare2.and(bare1.not())).visualize({palette: ['AAAAAA']}), // Visualize the other bare areas as white. bare1.updateMask(bare1).visualize({palette: ['FFFFFF']}), ]).mosaic(); Map.addLayer(mosaic, {}, 'Visualization mosaic');
import ee import geemap.core as geemap
Colab (Python)
# Load a NAIP quarter quad, display. naip = ee.Image('USDA/NAIP/DOQQ/m_4207148_nw_19_1_20120710') m = geemap.Map() m.set_center(-71.0915, 42.3443, 14) m.add_layer(naip, {}, 'NAIP DOQQ') # Create the NDVI and NDWI spectral indices. ndvi = naip.normalizedDifference(['N', 'R']) ndwi = naip.normalizedDifference(['G', 'N']) # Create some binary images from thresholds on the indices. # This threshold is designed to detect bare land. bare_1 = ndvi.lt(0.2).And(ndwi.lt(0.3)) # This detects bare land with lower sensitivity. It also detects shadows. bare_2 = ndvi.lt(0.2).And(ndwi.lt(0.8)) # Mask and mosaic visualization images. The last layer is on top. mosaic = ee.ImageCollection([ # NDWI > 0.5 is water. Visualize it with a blue palette. ndwi.updateMask(ndwi.gte(0.5)).visualize( min=0.5, max=1, palette=['00FFFF', '0000FF'] ), # NDVI > 0.2 is vegetation. Visualize it with a green palette. ndvi.updateMask(ndvi.gte(0.2)).visualize( min=-1, max=1, palette=['FF0000', '00FF00'] ), # Visualize bare areas with shadow (bare_2 but not bare_1) as gray. bare_2.updateMask(bare_2.And(bare_1.Not())).visualize(palette=['AAAAAA']), # Visualize the other bare areas as white. bare_1.updateMask(bare_1).visualize(palette=['FFFFFF']), ]).mosaic() m.add_layer(mosaic, {}, 'Visualization mosaic') m
Para criar um composto que maximize uma faixa arbitrária na entrada, use
imageCollection.qualityMosaic()
. O método qualityMosaic()
define cada pixel no composto com base na imagem da coleção que tem um valor máximo
para a faixa especificada. Por exemplo, o código abaixo demonstra como criar um
composto de pixel mais verde e um composto de valor recente:
Editor de código (JavaScript)
// Define a function that scales and masks Landsat 8 surface reflectance images. function prepSrL8(image) { // Develop masks for unwanted pixels (fill, cloud, cloud shadow). var qaMask = image.select('QA_PIXEL').bitwiseAnd(parseInt('11111', 2)).eq(0); var saturationMask = image.select('QA_RADSAT').eq(0); // Apply the scaling factors to the appropriate bands. var getFactorImg = function(factorNames) { var factorList = image.toDictionary().select(factorNames).values(); return ee.Image.constant(factorList); }; var scaleImg = getFactorImg([ 'REFLECTANCE_MULT_BAND_.|TEMPERATURE_MULT_BAND_ST_B10']); var offsetImg = getFactorImg([ 'REFLECTANCE_ADD_BAND_.|TEMPERATURE_ADD_BAND_ST_B10']); var scaled = image.select('SR_B.|ST_B10').multiply(scaleImg).add(offsetImg); // Replace original bands with scaled bands and apply masks. return image.addBands(scaled, null, true) .updateMask(qaMask).updateMask(saturationMask); } // This function masks clouds and adds quality bands to Landsat 8 images. var addQualityBands = function(image) { // Normalized difference vegetation index. var ndvi = image.normalizedDifference(['SR_B5', 'SR_B4']); // Image timestamp as milliseconds since Unix epoch. var millis = ee.Image(image.getNumber('system:time_start')) .rename('millis').toFloat(); return prepSrL8(image).addBands([ndvi, millis]); }; // Load a 2014 Landsat 8 ImageCollection. // Map the cloud masking and quality band function over the collection. var collection = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2') .filterDate('2014-06-01', '2014-12-31') .map(addQualityBands); // Create a cloud-free, most recent value composite. var recentValueComposite = collection.qualityMosaic('millis'); // Create a greenest pixel composite. var greenestPixelComposite = collection.qualityMosaic('nd'); // Display the results. Map.setCenter(-122.374, 37.8239, 12); // San Francisco Bay var vizParams = {bands: ['SR_B5', 'SR_B4', 'SR_B3'], min: 0, max: 0.4}; Map.addLayer(recentValueComposite, vizParams, 'Recent value composite'); Map.addLayer(greenestPixelComposite, vizParams, 'Greenest pixel composite'); // Compare to a cloudy image in the collection. var cloudy = ee.Image('LANDSAT/LC08/C02/T1_TOA/LC08_044034_20140825'); Map.addLayer(cloudy, {bands: ['B5', 'B4', 'B3'], min: 0, max: 0.4}, 'Cloudy');
import ee import geemap.core as geemap
Colab (Python)
# Define a function that scales and masks Landsat 8 surface reflectance images. def prep_sr_l8(image): # Develop masks for unwanted pixels (fill, cloud, cloud shadow). qa_mask = image.select('QA_PIXEL').bitwiseAnd(int('11111', 2)).eq(0) saturation_mask = image.select('QA_RADSAT').eq(0) # Helper function to create image from scaling factors. def get_factor_img(factor_names): factor_list = image.toDictionary().select(factor_names).values() return ee.Image.constant(factor_list) # Apply the scaling factors to the appropriate bands. scale_img = get_factor_img( ['REFLECTANCE_MULT_BAND_.|TEMPERATURE_MULT_BAND_ST_B10'] ) offset_img = get_factor_img( ['REFLECTANCE_ADD_BAND_.|TEMPERATURE_ADD_BAND_ST_B10'] ) scaled = image.select('SR_B.|ST_B10').multiply(scale_img).add(offset_img) # Replace original bands with scaled bands and apply masks. return ( image.addBands(scaled, None, True) .updateMask(qa_mask) .updateMask(saturation_mask) ) # This function masks clouds and adds quality bands to Landsat 8 images. def add_quality_bands(image): # Normalized difference vegetation index. ndvi = image.normalizedDifference(['SR_B5', 'SR_B4']) # Image timestamp as milliseconds since Unix epoch. millis = ( ee.Image(image.getNumber('system:time_start')).rename('millis').toFloat() ) return prep_sr_l8(image).addBands([ndvi, millis]) # Load a 2014 Landsat 8 ImageCollection. # Map the cloud masking and quality band function over the collection. collection = ( ee.ImageCollection('LANDSAT/LC08/C02/T1_L2') .filterDate('2014-06-01', '2014-12-31') .map(add_quality_bands) ) # Create a cloud-free, most recent value composite. recent_value_composite = collection.qualityMosaic('millis') # Create a greenest pixel composite. greenest_pixel_composite = collection.qualityMosaic('nd') # Display the results. m = geemap.Map() m.set_center(-122.374, 37.8239, 12) # San Francisco Bay viz_params = {'bands': ['SR_B5', 'SR_B4', 'SR_B3'], 'min': 0, 'max': 0.4} m.add_layer(recent_value_composite, viz_params, 'Recent value composite') m.add_layer(greenest_pixel_composite, viz_params, 'Greenest pixel composite') # Compare to a cloudy image in the collection. cloudy = ee.Image('LANDSAT/LC08/C02/T1_TOA/LC08_044034_20140825') m.add_layer( cloudy, {'bands': ['B5', 'B4', 'B3'], 'min': 0, 'max': 0.4}, 'Cloudy' ) m
Use a ferramenta de inspeção para verificar os valores de pixels em diferentes locais nos compostos.
Observe que a faixa millis
(carimbo de data/hora) varia de acordo com o local, indicando que
pixels diferentes vêm de momentos diferentes.