Фильтрация коллекции изображений

Как показано в разделах «Начало работы» и « Информация о коллекции изображений» , Earth Engine предоставляет множество удобных методов фильтрации коллекций изображений. В частности, многие распространенные варианты использования обрабатываются с помощью imageCollection.filterDate() и imageCollection.filterBounds() . Для фильтрации общего назначения используйте imageCollection.filter() с ee.Filter в качестве аргумента. В следующем примере демонстрируются как удобные методы, так и filter() для идентификации и удаления изображений с высокой облачностью из ImageCollection .

Редактор кода (JavaScript)

// Load Landsat 8 data, filter by date, month, and bounds.
var collection = ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')
  .filterDate('2015-01-01', '2018-01-01')  // Three years of data
  .filter(ee.Filter.calendarRange(11, 2, 'month'))  // Only Nov-Feb observations
  .filterBounds(ee.Geometry.Point(25.8544, -18.08874));  // Intersecting ROI

// Also filter the collection by the CLOUD_COVER property.
var filtered = collection.filter(ee.Filter.eq('CLOUD_COVER', 0));

// Create two composites to check the effect of filtering by CLOUD_COVER.
var badComposite = collection.mean();
var goodComposite = filtered.mean();

// Display the composites.
Map.setCenter(25.8544, -18.08874, 13);
Map.addLayer(badComposite,
             {bands: ['B3', 'B2', 'B1'], min: 0.05, max: 0.35, gamma: 1.1},
             'Bad composite');
Map.addLayer(goodComposite,
             {bands: ['B3', 'B2', 'B1'], min: 0.05, max: 0.35, gamma: 1.1},
             'Good composite');

Настройка Python

См. страницу «Среда Python» для получения информации об API Python и использовании geemap для интерактивной разработки.

import ee
import geemap.core as geemap

Колаб (Питон)

# Load Landsat 8 data, filter by date, month, and bounds.
collection = (
    ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')
    # Three years of data
    .filterDate('2015-01-01', '2018-01-01')
    # Only Nov-Feb observations
    .filter(ee.Filter.calendarRange(11, 2, 'month'))
    # Intersecting ROI
    .filterBounds(ee.Geometry.Point(25.8544, -18.08874))
)

# Also filter the collection by the CLOUD_COVER property.
filtered = collection.filter(ee.Filter.eq('CLOUD_COVER', 0))

# Create two composites to check the effect of filtering by CLOUD_COVER.
bad_composite = collection.mean()
good_composite = filtered.mean()

# Display the composites.
m = geemap.Map()
m.set_center(25.8544, -18.08874, 13)
m.add_layer(
    bad_composite,
    {'bands': ['B3', 'B2', 'B1'], 'min': 0.05, 'max': 0.35, 'gamma': 1.1},
    'Bad composite',
)
m.add_layer(
    good_composite,
    {'bands': ['B3', 'B2', 'B1'], 'min': 0.05, 'max': 0.35, 'gamma': 1.1},
    'Good composite',
)
m