公告:凡是在
2025 年 4 月 15 日前註冊使用 Earth Engine 的非商業專案,都必須
驗證非商業用途資格,才能繼續存取 Earth Engine。
對 ImageCollection 進行疊代
透過集合功能整理內容
你可以依據偏好儲存及分類內容。
雖然 map()
會將函式套用至集合中的每張圖片,但函式會個別造訪集合中的每張圖片。舉例來說,假設您想計算時間序列中 t 時間點的累積異常值 (At)。如要取得以 At = f(Imaget, At-1) 為形式遞迴定義的序列,對應功能無法運作,因為該函式 (f) 會依賴先前的結果 (At-1)。舉例來說,假設您想計算一系列累積的常態化差異植被指數 (NDVI) 異常圖片,並與基準值比較。讓 A0 = 0,並讓 f(Imaget, At-1) = Imaget + At-1,其中 At-1 是累積異常值至 t-1,而 Imaget 則是 t 的異常值。使用 imageCollection.iterate()
製作這個遞迴定義的 ImageCollection
。在以下範例中,accumulate()
函式會採用兩個參數:集合中的圖片,以及所有先前輸出的清單。每次呼叫 iterate()
時,系統會將異常值加入至累積和,並將結果加入清單。最終結果會傳遞至 ImageCollection
建構函式,以取得新的圖片序列:
程式碼編輯器 (JavaScript)
// Load MODIS EVI imagery.
var collection = ee.ImageCollection('MODIS/006/MYD13A1').select('EVI');
// Define reference conditions from the first 10 years of data.
var reference = collection.filterDate('2001-01-01', '2010-12-31')
// Sort chronologically in descending order.
.sort('system:time_start', false);
// Compute the mean of the first 10 years.
var mean = reference.mean();
// Compute anomalies by subtracting the 2001-2010 mean from each image in a
// collection of 2011-2014 images. Copy the date metadata over to the
// computed anomaly images in the new collection.
var series = collection.filterDate('2011-01-01', '2014-12-31').map(function(image) {
return image.subtract(mean).set('system:time_start', image.get('system:time_start'));
});
// Display cumulative anomalies.
Map.setCenter(-100.811, 40.2, 5);
Map.addLayer(series.sum(),
{min: -60000, max: 60000, palette: ['FF0000', '000000', '00FF00']}, 'EVI anomaly');
// Get the timestamp from the most recent image in the reference collection.
var time0 = reference.first().get('system:time_start');
// Use imageCollection.iterate() to make a collection of cumulative anomaly over time.
// The initial value for iterate() is a list of anomaly images already processed.
// The first anomaly image in the list is just 0, with the time0 timestamp.
var first = ee.List([
// Rename the first band 'EVI'.
ee.Image(0).set('system:time_start', time0).select([0], ['EVI'])
]);
// This is a function to pass to Iterate().
// As anomaly images are computed, add them to the list.
var accumulate = function(image, list) {
// Get the latest cumulative anomaly image from the end of the list with
// get(-1). Since the type of the list argument to the function is unknown,
// it needs to be cast to a List. Since the return type of get() is unknown,
// cast it to Image.
var previous = ee.Image(ee.List(list).get(-1));
// Add the current anomaly to make a new cumulative anomaly image.
var added = image.add(previous)
// Propagate metadata to the new image.
.set('system:time_start', image.get('system:time_start'));
// Return the list with the cumulative anomaly inserted.
return ee.List(list).add(added);
};
// Create an ImageCollection of cumulative anomaly images by iterating.
// Since the return type of iterate is unknown, it needs to be cast to a List.
var cumulative = ee.ImageCollection(ee.List(series.iterate(accumulate, first)));
// Predefine the chart titles.
var title = {
title: 'Cumulative EVI anomaly over time',
hAxis: {title: 'Time'},
vAxis: {title: 'Cumulative EVI anomaly'},
};
// Chart some interesting locations.
var pt1 = ee.Geometry.Point(-65.544, -4.894);
print('Amazon rainforest:',
ui.Chart.image.series(
cumulative, pt1, ee.Reducer.first(), 500).setOptions(title));
var pt2 = ee.Geometry.Point(116.4647, 40.1054);
print('Beijing urbanization:',
ui.Chart.image.series(
cumulative, pt2, ee.Reducer.first(), 500).setOptions(title));
var pt3 = ee.Geometry.Point(-110.3412, 34.1982);
print('Arizona forest disturbance and recovery:',
ui.Chart.image.series(
cumulative, pt3, ee.Reducer.first(), 500).setOptions(title));
Python 設定
請參閱「
Python 環境」頁面,瞭解 Python API 和如何使用 geemap
進行互動式開發。
import ee
import geemap.core as geemap
Colab (Python)
import altair as alt
# Load MODIS EVI imagery.
collection = ee.ImageCollection('MODIS/006/MYD13A1').select('EVI')
# Define reference conditions from the first 10 years of data.
reference = collection.filterDate('2001-01-01', '2010-12-31').sort(
# Sort chronologically in descending order.
'system:time_start',
False,
)
# Compute the mean of the first 10 years.
mean = reference.mean()
# Compute anomalies by subtracting the 2001-2010 mean from each image in a
# collection of 2011-2014 images. Copy the date metadata over to the
# computed anomaly images in the new collection.
series = collection.filterDate('2011-01-01', '2014-12-31').map(
lambda image: image.subtract(mean).set(
'system:time_start', image.get('system:time_start')
)
)
# Display cumulative anomalies.
m = geemap.Map()
m.set_center(-100.811, 40.2, 5)
m.add_layer(
series.sum(),
{'min': -60000, 'max': 60000, 'palette': ['FF0000', '000000', '00FF00']},
'EVI anomaly',
)
display(m)
# Get the timestamp from the most recent image in the reference collection.
time_0 = reference.first().get('system:time_start')
# Use imageCollection.iterate() to make a collection of cumulative anomaly over time.
# The initial value for iterate() is a list of anomaly images already processed.
# The first anomaly image in the list is just 0, with the time_0 timestamp.
first = ee.List([
# Rename the first band 'EVI'.
ee.Image(0)
.set('system:time_start', time_0)
.select([0], ['EVI'])
])
# This is a function to pass to Iterate().
# As anomaly images are computed, add them to the list.
def accumulate(image, list):
# Get the latest cumulative anomaly image from the end of the list with
# get(-1). Since the type of the list argument to the function is unknown,
# it needs to be cast to a List. Since the return type of get() is unknown,
# cast it to Image.
previous = ee.Image(ee.List(list).get(-1))
# Add the current anomaly to make a new cumulative anomaly image.
added = image.add(previous).set(
# Propagate metadata to the new image.
'system:time_start',
image.get('system:time_start'),
)
# Return the list with the cumulative anomaly inserted.
return ee.List(list).add(added)
# Create an ImageCollection of cumulative anomaly images by iterating.
# Since the return type of iterate is unknown, it needs to be cast to a List.
cumulative = ee.ImageCollection(ee.List(series.iterate(accumulate, first)))
# Predefine the chart titles.
title = 'Cumulative EVI anomaly over time'
# Chart some interesting locations.
def display_chart(region, collection):
reduced = (
collection.filterBounds(region)
.sort('system:time_start')
.map(
lambda image: ee.Feature(
None,
image.reduceRegion(ee.Reducer.first(), region, 500).set(
'time', image.get('system:time_start')
),
)
)
)
reduced_dataframe = ee.data.computeFeatures(
{'expression': reduced, 'fileFormat': 'PANDAS_DATAFRAME'}
)
alt.Chart(reduced_dataframe).mark_line().encode(
alt.X('time:T').title('Time'),
alt.Y('EVI:Q').title('Cumulative EVI anomaly'),
).properties(title=title).display()
pt_1 = ee.Geometry.Point(-65.544, -4.894)
display('Amazon rainforest:')
display_chart(pt_1, cumulative)
pt_2 = ee.Geometry.Point(116.4647, 40.1054)
display('Beijing urbanization:')
display_chart(pt_2, cumulative)
pt_3 = ee.Geometry.Point(-110.3412, 34.1982)
display('Arizona forest disturbance and recovery:')
display_chart(pt_3, cumulative)
繪製這些序列的圖表,可瞭解 NDVI 是否已相對於先前的干擾穩定下來,或是 NDVI 是否呈現新狀態。如要進一步瞭解 Earth Engine 中的圖表,請參閱「圖表」一節。
迭代函式可執行的作業受到限制。具體來說,它無法修改函式以外的變數、無法輸出任何內容,也無法使用 JavaScript 的「if」或「for」陳述式。您想收集的任何結果,或您想保留至下一個迭代程序的中繼資訊,都必須在函式的回傳值中。您可以使用 `ee.Algorithms.If()` 執行條件式作業。
除非另有註明,否則本頁面中的內容是採用創用 CC 姓名標示 4.0 授權,程式碼範例則為阿帕契 2.0 授權。詳情請參閱《Google Developers 網站政策》。Java 是 Oracle 和/或其關聯企業的註冊商標。
上次更新時間:2025-07-25 (世界標準時間)。
[null,null,["上次更新時間:2025-07-25 (世界標準時間)。"],[[["\u003cp\u003e\u003ccode\u003eimageCollection.iterate()\u003c/code\u003e is used to perform calculations that depend on previous results within an ImageCollection, unlike \u003ccode\u003emap()\u003c/code\u003e which processes each image independently.\u003c/p\u003e\n"],["\u003cp\u003eThis example demonstrates using \u003ccode\u003eiterate()\u003c/code\u003e to calculate cumulative anomalies of the Normalized Difference Vegetation Index (NDVI) over time.\u003c/p\u003e\n"],["\u003cp\u003eThe function passed to \u003ccode\u003eiterate()\u003c/code\u003e accumulates anomalies, adding the current image's anomaly to the running sum from previous iterations.\u003c/p\u003e\n"],["\u003cp\u003eResulting cumulative anomaly ImageCollection can be charted to analyze NDVI trends and disturbances over time in different locations.\u003c/p\u003e\n"],["\u003cp\u003eThe iterated function has limitations: it can't modify external variables, print, or use JavaScript 'if'/'for' statements, requiring results and intermediate information to be within its return value.\u003c/p\u003e\n"]]],["`imageCollection.iterate()` computes cumulative anomalies, unlike `map()`, which processes images independently. It defines a series *A~t~* = *f(Image~t~, A~t-1~)*, using a function to add the current anomaly to the previous cumulative anomaly. An example shows calculating cumulative Normalized Difference Vegetation Index (NDVI) anomalies, where `accumulate()` adds the current anomaly to a running sum. The result is stored in a list and then converted to a new `ImageCollection`. The function used in iterate cannot modify variables outside itself or use `if` or `for` statements.\n"],null,["# Iterating over an ImageCollection\n\nAlthough `map()` applies a function to every image in a collection, the\nfunction visits every image in the collection independently. For example, suppose you\nwant to compute a cumulative anomaly (*A~t~* ) at time *t* from a time\nseries. To obtain a recursively defined series of the form *A~t~ =\nf(Image~t~, A~t-1~)* , mapping won't work because the function\n(*f* ) depends on the previous result (*A~t-1~* ). For example, suppose\nyou want to compute a series of cumulative Normalized Difference Vegetation Index (NDVI)\nanomaly images relative to a baseline. Let *A~0~* = 0 and\n*f(Image~t~, A~t-1~)* = *Image~t~ + A~t-1~*\nwhere *A~t-1~* is the cumulative anomaly up to time *t-1* and\n*Image~t~* is the anomaly at time *t* . Use\n`imageCollection.iterate()` to make this recursively defined\n`ImageCollection`. In the following example, the function\n`accumulate()` takes two parameters: an image in the collection, and a list\nof all the previous outputs. With each call to `iterate()`, the anomaly is\nadded to the running sum and the result is added to the list. The final result is\npassed to the `ImageCollection` constructor to get a new sequence of images:\n\n### Code Editor (JavaScript)\n\n```javascript\n// Load MODIS EVI imagery.\nvar collection = ee.ImageCollection('MODIS/006/MYD13A1').select('EVI');\n\n// Define reference conditions from the first 10 years of data.\nvar reference = collection.filterDate('2001-01-01', '2010-12-31')\n // Sort chronologically in descending order.\n .sort('system:time_start', false);\n\n// Compute the mean of the first 10 years.\nvar mean = reference.mean();\n\n// Compute anomalies by subtracting the 2001-2010 mean from each image in a\n// collection of 2011-2014 images. Copy the date metadata over to the\n// computed anomaly images in the new collection.\nvar series = collection.filterDate('2011-01-01', '2014-12-31').map(function(image) {\n return image.subtract(mean).set('system:time_start', image.get('system:time_start'));\n});\n\n// Display cumulative anomalies.\nMap.setCenter(-100.811, 40.2, 5);\nMap.addLayer(series.sum(),\n {min: -60000, max: 60000, palette: ['FF0000', '000000', '00FF00']}, 'EVI anomaly');\n\n// Get the timestamp from the most recent image in the reference collection.\nvar time0 = reference.first().get('system:time_start');\n\n// Use imageCollection.iterate() to make a collection of cumulative anomaly over time.\n// The initial value for iterate() is a list of anomaly images already processed.\n// The first anomaly image in the list is just 0, with the time0 timestamp.\nvar first = ee.List([\n // Rename the first band 'EVI'.\n ee.Image(0).set('system:time_start', time0).select([0], ['EVI'])\n]);\n\n// This is a function to pass to Iterate().\n// As anomaly images are computed, add them to the list.\nvar accumulate = function(image, list) {\n // Get the latest cumulative anomaly image from the end of the list with\n // get(-1). Since the type of the list argument to the function is unknown,\n // it needs to be cast to a List. Since the return type of get() is unknown,\n // cast it to Image.\n var previous = ee.Image(ee.List(list).get(-1));\n // Add the current anomaly to make a new cumulative anomaly image.\n var added = image.add(previous)\n // Propagate metadata to the new image.\n .set('system:time_start', image.get('system:time_start'));\n // Return the list with the cumulative anomaly inserted.\n return ee.List(list).add(added);\n};\n\n// Create an ImageCollection of cumulative anomaly images by iterating.\n// Since the return type of iterate is unknown, it needs to be cast to a List.\nvar cumulative = ee.ImageCollection(ee.List(series.iterate(accumulate, first)));\n\n// Predefine the chart titles.\nvar title = {\n title: 'Cumulative EVI anomaly over time',\n hAxis: {title: 'Time'},\n vAxis: {title: 'Cumulative EVI anomaly'},\n};\n\n// Chart some interesting locations.\nvar pt1 = ee.Geometry.Point(-65.544, -4.894);\nprint('Amazon rainforest:',\n ui.Chart.image.series(\n cumulative, pt1, ee.Reducer.first(), 500).setOptions(title));\n\nvar pt2 = ee.Geometry.Point(116.4647, 40.1054);\nprint('Beijing urbanization:',\n ui.Chart.image.series(\n cumulative, pt2, ee.Reducer.first(), 500).setOptions(title));\n\nvar pt3 = ee.Geometry.Point(-110.3412, 34.1982);\nprint('Arizona forest disturbance and recovery:',\n ui.Chart.image.series(\n cumulative, pt3, ee.Reducer.first(), 500).setOptions(title));\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\nimport altair as alt\n# Load MODIS EVI imagery.\ncollection = ee.ImageCollection('MODIS/006/MYD13A1').select('EVI')\n\n# Define reference conditions from the first 10 years of data.\nreference = collection.filterDate('2001-01-01', '2010-12-31').sort(\n # Sort chronologically in descending order.\n 'system:time_start',\n False,\n)\n\n# Compute the mean of the first 10 years.\nmean = reference.mean()\n\n# Compute anomalies by subtracting the 2001-2010 mean from each image in a\n# collection of 2011-2014 images. Copy the date metadata over to the\n# computed anomaly images in the new collection.\nseries = collection.filterDate('2011-01-01', '2014-12-31').map(\n lambda image: image.subtract(mean).set(\n 'system:time_start', image.get('system:time_start')\n )\n)\n\n# Display cumulative anomalies.\nm = geemap.Map()\nm.set_center(-100.811, 40.2, 5)\nm.add_layer(\n series.sum(),\n {'min': -60000, 'max': 60000, 'palette': ['FF0000', '000000', '00FF00']},\n 'EVI anomaly',\n)\ndisplay(m)\n\n# Get the timestamp from the most recent image in the reference collection.\ntime_0 = reference.first().get('system:time_start')\n\n# Use imageCollection.iterate() to make a collection of cumulative anomaly over time.\n# The initial value for iterate() is a list of anomaly images already processed.\n# The first anomaly image in the list is just 0, with the time_0 timestamp.\nfirst = ee.List([\n # Rename the first band 'EVI'.\n ee.Image(0)\n .set('system:time_start', time_0)\n .select([0], ['EVI'])\n])\n\n# This is a function to pass to Iterate().\n# As anomaly images are computed, add them to the list.\ndef accumulate(image, list):\n # Get the latest cumulative anomaly image from the end of the list with\n # get(-1). Since the type of the list argument to the function is unknown,\n # it needs to be cast to a List. Since the return type of get() is unknown,\n # cast it to Image.\n previous = ee.Image(ee.List(list).get(-1))\n # Add the current anomaly to make a new cumulative anomaly image.\n added = image.add(previous).set(\n # Propagate metadata to the new image.\n 'system:time_start',\n image.get('system:time_start'),\n )\n # Return the list with the cumulative anomaly inserted.\n return ee.List(list).add(added)\n\n# Create an ImageCollection of cumulative anomaly images by iterating.\n# Since the return type of iterate is unknown, it needs to be cast to a List.\ncumulative = ee.ImageCollection(ee.List(series.iterate(accumulate, first)))\n\n# Predefine the chart titles.\ntitle = 'Cumulative EVI anomaly over time'\n\n# Chart some interesting locations.\ndef display_chart(region, collection):\n reduced = (\n collection.filterBounds(region)\n .sort('system:time_start')\n .map(\n lambda image: ee.Feature(\n None,\n image.reduceRegion(ee.Reducer.first(), region, 500).set(\n 'time', image.get('system:time_start')\n ),\n )\n )\n )\n reduced_dataframe = ee.data.computeFeatures(\n {'expression': reduced, 'fileFormat': 'PANDAS_DATAFRAME'}\n )\n alt.Chart(reduced_dataframe).mark_line().encode(\n alt.X('time:T').title('Time'),\n alt.Y('EVI:Q').title('Cumulative EVI anomaly'),\n ).properties(title=title).display()\n\npt_1 = ee.Geometry.Point(-65.544, -4.894)\ndisplay('Amazon rainforest:')\ndisplay_chart(pt_1, cumulative)\n\npt_2 = ee.Geometry.Point(116.4647, 40.1054)\ndisplay('Beijing urbanization:')\ndisplay_chart(pt_2, cumulative)\n\npt_3 = ee.Geometry.Point(-110.3412, 34.1982)\ndisplay('Arizona forest disturbance and recovery:')\ndisplay_chart(pt_3, cumulative)\n```\n\nCharting these sequences indicates whether NDVI is stabilizing relative to previous\ndisturbances or whether NDVI is trending to a new state. Learn more about charts in\nEarth Engine from the [Charts section](/earth-engine/guides/charts).\n\nThe iterated function is limited in the operations it can perform. Specifically, it can't\nmodify variables outside the function; it can't print anything; it can't use JavaScript 'if'\nor 'for' statements. Any results you wish to collect or intermediate information you wish to\ncarry over to the next iteration must be in the function's return value. You can use\n\\`ee.Algorithms.If()\\` to perform conditional operations."]]