Announcement: All noncommercial projects registered to use Earth Engine before
April 15, 2025 must
verify noncommercial eligibility to maintain Earth Engine access.
Reducing an ImageCollection
Stay organized with collections
Save and categorize content based on your preferences.
To composite images in an ImageCollection
, use
imageCollection.reduce()
. This will composite all the images in the
collection to a single image representing, for example, the min, max, mean or standard
deviation of the images.
(See the Reducers section
for more information about reducers). For example, to create a median value image from a
collection:
Code Editor (JavaScript)
// Load a Landsat 8 collection for a single path-row.
var collection = ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')
.filter(ee.Filter.eq('WRS_PATH', 44))
.filter(ee.Filter.eq('WRS_ROW', 34))
.filterDate('2014-01-01', '2015-01-01');
// Compute a median image and display.
var median = collection.median();
Map.setCenter(-122.3578, 37.7726, 12);
Map.addLayer(median, {bands: ['B4', 'B3', 'B2'], max: 0.3}, 'Median');
Python setup
See the
Python Environment page for information on the Python API and using
geemap
for interactive development.
import ee
import geemap.core as geemap
Colab (Python)
# Load a Landsat 8 collection for a single path-row.
collection = (
ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')
.filter(ee.Filter.eq('WRS_PATH', 44))
.filter(ee.Filter.eq('WRS_ROW', 34))
.filterDate('2014-01-01', '2015-01-01')
)
# Compute a median image and display.
median = collection.median()
m = geemap.Map()
m.set_center(-122.3578, 37.7726, 12)
m.add_layer(median, {'bands': ['B4', 'B3', 'B2'], 'max': 0.3}, 'Median')
m
At each location in the output image, in each band, the pixel value is the median of all
unmasked pixels in the input imagery (the images in the collection). In the previous
example, median()
is a convenience method for the following call:
Code Editor (JavaScript)
// Reduce the collection with a median reducer.
var median = collection.reduce(ee.Reducer.median());
// Display the median image.
Map.addLayer(median,
{bands: ['B4_median', 'B3_median', 'B2_median'], max: 0.3},
'Also median');
Python setup
See the
Python Environment page for information on the Python API and using
geemap
for interactive development.
import ee
import geemap.core as geemap
Colab (Python)
# Reduce the collection with a median reducer.
median = collection.reduce(ee.Reducer.median())
# Display the median image.
m.add_layer(
median,
{'bands': ['B4_median', 'B3_median', 'B2_median'], 'max': 0.3},
'Also median',
)
m
Note that the band names differ as a result of using reduce()
instead of the
convenience method. Specifically, the names of the reducer have been appended to the
band names.
More complex reductions are also possible using reduce()
. For
example, to compute the long term linear trend over a collection, use one of the linear
regression reducers. The following code computes the linear trend of MODIS Enhanced
Vegetation Index (EVI):
Code Editor (JavaScript)
// This function adds a band representing the image timestamp.
var addTime = function(image) {
return image.addBands(image.metadata('system:time_start')
// Convert milliseconds from epoch to years to aid in
// interpretation of the following trend calculation.
.divide(1000 * 60 * 60 * 24 * 365));
};
// Load a MODIS collection, filter to several years of 16 day mosaics,
// and map the time band function over it.
var collection = ee.ImageCollection('MODIS/006/MYD13A1')
.filterDate('2004-01-01', '2010-10-31')
.map(addTime);
// Select the bands to model with the independent variable first.
var trend = collection.select(['system:time_start', 'EVI'])
// Compute the linear trend over time.
.reduce(ee.Reducer.linearFit());
// Display the trend with increasing slopes in green, decreasing in red.
Map.setCenter(-96.943, 39.436, 5);
Map.addLayer(
trend,
{min: 0, max: [-100, 100, 10000], bands: ['scale', 'scale', 'offset']},
'EVI trend');
Python setup
See the
Python Environment page for information on the Python API and using
geemap
for interactive development.
import ee
import geemap.core as geemap
Colab (Python)
# This function adds a band representing the image timestamp.
def add_time(image):
return image.addBands(
image.metadata('system:time_start')
# Convert milliseconds from epoch to years to aid in
# interpretation of the following trend calculation.
.divide(1000 * 60 * 60 * 24 * 365)
)
# Load a MODIS collection, filter to several years of 16 day mosaics,
# and map the time band function over it.
collection = (
ee.ImageCollection('MODIS/006/MYD13A1')
.filterDate('2004-01-01', '2010-10-31')
.map(add_time)
)
# Select the bands to model with the independent variable first.
trend = collection.select(['system:time_start', 'EVI']).reduce(
# Compute the linear trend over time.
ee.Reducer.linearFit()
)
# Display the trend with increasing slopes in green, decreasing in red.
m.set_center(-96.943, 39.436, 5)
m = geemap.Map()
m.add_layer(
trend,
{
'min': 0,
'max': [-100, 100, 10000],
'bands': ['scale', 'scale', 'offset'],
},
'EVI trend',
)
m
Note that the output of the reduction in this example is a two banded image
with one band for the slope of a linear regression (scale
) and one band
for the intercept (offset
). Explore the API documentation to see a list of
the reducers that are available to reduce an ImageCollection
to a single
Image
.
Composites have no projection
Composite images created by reducing an image collection are able to produce pixels
in any requested projection and therefore have no fixed output projection.
Instead, composites have
the default
projection of WGS-84 with 1-degree resolution pixels. Composites with the default
projection will be computed in whatever output projection is requested. A request
occurs by displaying the composite in the Code Editor (learn about how the Code editor
sets scale and
projection), or by explicitly specifying a
projection/scale as in an aggregation such as
ReduceRegion
or Export
.
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-03-11 UTC.
[null,null,["Last updated 2024-03-11 UTC."],[[["\u003cp\u003eUse \u003ccode\u003eimageCollection.reduce()\u003c/code\u003e to composite images in an \u003ccode\u003eImageCollection\u003c/code\u003e into a single image representing a statistical summary (e.g., median, mean) of the collection.\u003c/p\u003e\n"],["\u003cp\u003eThe \u003ccode\u003ereduce()\u003c/code\u003e function utilizes reducers like \u003ccode\u003eee.Reducer.median()\u003c/code\u003e to calculate the desired composite, with band names reflecting the reducer used.\u003c/p\u003e\n"],["\u003cp\u003eMore complex reductions, such as calculating linear trends, are possible using specific reducers like \u003ccode\u003eee.Reducer.linearFit()\u003c/code\u003e.\u003c/p\u003e\n"],["\u003cp\u003eComposite images generated from reducing an image collection do not have a fixed projection and will be computed based on the requested output projection.\u003c/p\u003e\n"]]],[],null,["# Reducing an ImageCollection\n\nTo composite images in an `ImageCollection`, use\n`imageCollection.reduce()`. This will composite all the images in the\ncollection to a single image representing, for example, the min, max, mean or standard\ndeviation of the images.\n(See the [Reducers section](/earth-engine/guides/reducers_image_collection)\nfor more information about reducers). For example, to create a median value image from a\ncollection:\n\n### Code Editor (JavaScript)\n\n```javascript\n// Load a Landsat 8 collection for a single path-row.\nvar collection = ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')\n .filter(ee.Filter.eq('WRS_PATH', 44))\n .filter(ee.Filter.eq('WRS_ROW', 34))\n .filterDate('2014-01-01', '2015-01-01');\n\n// Compute a median image and display.\nvar median = collection.median();\nMap.setCenter(-122.3578, 37.7726, 12);\nMap.addLayer(median, {bands: ['B4', 'B3', 'B2'], max: 0.3}, 'Median');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Load a Landsat 8 collection for a single path-row.\ncollection = (\n ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')\n .filter(ee.Filter.eq('WRS_PATH', 44))\n .filter(ee.Filter.eq('WRS_ROW', 34))\n .filterDate('2014-01-01', '2015-01-01')\n)\n\n# Compute a median image and display.\nmedian = collection.median()\nm = geemap.Map()\nm.set_center(-122.3578, 37.7726, 12)\nm.add_layer(median, {'bands': ['B4', 'B3', 'B2'], 'max': 0.3}, 'Median')\nm\n```\n\nAt each location in the output image, in each band, the pixel value is the median of all\nunmasked pixels in the input imagery (the images in the collection). In the previous\nexample, `median()` is a convenience method for the following call:\n\n### Code Editor (JavaScript)\n\n```javascript\n// Reduce the collection with a median reducer.\nvar median = collection.reduce(ee.Reducer.median());\n\n// Display the median image.\nMap.addLayer(median,\n {bands: ['B4_median', 'B3_median', 'B2_median'], max: 0.3},\n 'Also median');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Reduce the collection with a median reducer.\nmedian = collection.reduce(ee.Reducer.median())\n\n# Display the median image.\nm.add_layer(\n median,\n {'bands': ['B4_median', 'B3_median', 'B2_median'], 'max': 0.3},\n 'Also median',\n)\nm\n```\n\nNote that the band names differ as a result of using `reduce()` instead of the\nconvenience method. Specifically, the names of the reducer have been appended to the\nband names.\n\nMore complex reductions are also possible using `reduce()`. For\nexample, to compute the long term linear trend over a collection, use one of the linear\nregression reducers. The following code computes the linear trend of MODIS Enhanced\nVegetation Index (EVI):\n\n### Code Editor (JavaScript)\n\n```javascript\n// This function adds a band representing the image timestamp.\nvar addTime = function(image) {\n return image.addBands(image.metadata('system:time_start')\n // Convert milliseconds from epoch to years to aid in\n // interpretation of the following trend calculation.\n .divide(1000 * 60 * 60 * 24 * 365));\n};\n\n// Load a MODIS collection, filter to several years of 16 day mosaics,\n// and map the time band function over it.\nvar collection = ee.ImageCollection('MODIS/006/MYD13A1')\n .filterDate('2004-01-01', '2010-10-31')\n .map(addTime);\n\n// Select the bands to model with the independent variable first.\nvar trend = collection.select(['system:time_start', 'EVI'])\n // Compute the linear trend over time.\n .reduce(ee.Reducer.linearFit());\n\n// Display the trend with increasing slopes in green, decreasing in red.\nMap.setCenter(-96.943, 39.436, 5);\nMap.addLayer(\n trend,\n {min: 0, max: [-100, 100, 10000], bands: ['scale', 'scale', 'offset']},\n 'EVI trend');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# This function adds a band representing the image timestamp.\ndef add_time(image):\n return image.addBands(\n image.metadata('system:time_start')\n # Convert milliseconds from epoch to years to aid in\n # interpretation of the following trend calculation.\n .divide(1000 * 60 * 60 * 24 * 365)\n )\n\n\n# Load a MODIS collection, filter to several years of 16 day mosaics,\n# and map the time band function over it.\ncollection = (\n ee.ImageCollection('MODIS/006/MYD13A1')\n .filterDate('2004-01-01', '2010-10-31')\n .map(add_time)\n)\n\n# Select the bands to model with the independent variable first.\ntrend = collection.select(['system:time_start', 'EVI']).reduce(\n # Compute the linear trend over time.\n ee.Reducer.linearFit()\n)\n\n# Display the trend with increasing slopes in green, decreasing in red.\nm.set_center(-96.943, 39.436, 5)\nm = geemap.Map()\nm.add_layer(\n trend,\n {\n 'min': 0,\n 'max': [-100, 100, 10000],\n 'bands': ['scale', 'scale', 'offset'],\n },\n 'EVI trend',\n)\nm\n```\n\nNote that the output of the reduction in this example is a two banded image\nwith one band for the slope of a linear regression (`scale`) and one band\nfor the intercept (`offset`). Explore the API documentation to see a list of\nthe reducers that are available to reduce an `ImageCollection` to a single\n`Image`.\n\nComposites have no projection\n-----------------------------\n\nComposite images created by reducing an image collection are able to produce pixels\nin any requested projection and therefore *have no fixed output projection* .\nInstead, composites have\n[the default\nprojection](/earth-engine/guides/projections#the-default-projection) of WGS-84 with 1-degree resolution pixels. Composites with the default\nprojection will be computed in whatever output projection is requested. A request\noccurs by displaying the composite in the Code Editor (learn about how the Code editor\nsets [scale](/earth-engine/guides/scale#scale-of-analysis) and\n[projection](/earth-engine/guides/projections)), or by explicitly specifying a\nprojection/scale as in an aggregation such as\n`ReduceRegion` or `Export`."]]