公告:所有在
2025 年 4 月 15 日之前注册使用 Earth Engine 的非商业项目都必须
验证是否符合非商业性质的资格条件,才能继续使用 Earth Engine。
缩减 ImageCollection
使用集合让一切井井有条
根据您的偏好保存内容并对其进行分类。
如需在 ImageCollection
中合成图片,请使用 imageCollection.reduce()
。这会将集合中的所有图片合成到单张图片中,例如表示图片的最小值、最大值、平均值或标准差。
(如需详细了解 reducer,请参阅“Reducer”部分)。例如,如需根据集合创建中位数值图片,请执行以下操作:
Code Editor (JavaScript)
// Load a Landsat 8 collection for a single path-row.
var collection = ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')
.filter(ee.Filter.eq('WRS_PATH', 44))
.filter(ee.Filter.eq('WRS_ROW', 34))
.filterDate('2014-01-01', '2015-01-01');
// Compute a median image and display.
var median = collection.median();
Map.setCenter(-122.3578, 37.7726, 12);
Map.addLayer(median, {bands: ['B4', 'B3', 'B2'], max: 0.3}, 'Median');
Python 设置
如需了解 Python API 以及如何使用 geemap
进行交互式开发,请参阅
Python 环境页面。
import ee
import geemap.core as geemap
Colab (Python)
# Load a Landsat 8 collection for a single path-row.
collection = (
ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')
.filter(ee.Filter.eq('WRS_PATH', 44))
.filter(ee.Filter.eq('WRS_ROW', 34))
.filterDate('2014-01-01', '2015-01-01')
)
# Compute a median image and display.
median = collection.median()
m = geemap.Map()
m.set_center(-122.3578, 37.7726, 12)
m.add_layer(median, {'bands': ['B4', 'B3', 'B2'], 'max': 0.3}, 'Median')
m
在输出图像的每个位置,每个波段中的像素值都是输入图像(集合中的图像)中所有未经掩盖的像素的中位数。在前面的示例中,median()
是以下调用的便捷方法:
Code Editor (JavaScript)
// Reduce the collection with a median reducer.
var median = collection.reduce(ee.Reducer.median());
// Display the median image.
Map.addLayer(median,
{bands: ['B4_median', 'B3_median', 'B2_median'], max: 0.3},
'Also median');
Python 设置
如需了解 Python API 以及如何使用 geemap
进行交互式开发,请参阅
Python 环境页面。
import ee
import geemap.core as geemap
Colab (Python)
# Reduce the collection with a median reducer.
median = collection.reduce(ee.Reducer.median())
# Display the median image.
m.add_layer(
median,
{'bands': ['B4_median', 'B3_median', 'B2_median'], 'max': 0.3},
'Also median',
)
m
请注意,由于使用的是 reduce()
而非便捷方法,因此频段名称不同。具体而言,我们已将 reducer 的名称附加到乐队名称中。
您还可以使用 reduce()
进行更复杂的缩减。例如,如需计算集合中的长期线性趋势,请使用线性回归归约器之一。以下代码计算 MODIS 增强型植被指数 (EVI) 的线性趋势:
Code Editor (JavaScript)
// This function adds a band representing the image timestamp.
var addTime = function(image) {
return image.addBands(image.metadata('system:time_start')
// Convert milliseconds from epoch to years to aid in
// interpretation of the following trend calculation.
.divide(1000 * 60 * 60 * 24 * 365));
};
// Load a MODIS collection, filter to several years of 16 day mosaics,
// and map the time band function over it.
var collection = ee.ImageCollection('MODIS/006/MYD13A1')
.filterDate('2004-01-01', '2010-10-31')
.map(addTime);
// Select the bands to model with the independent variable first.
var trend = collection.select(['system:time_start', 'EVI'])
// Compute the linear trend over time.
.reduce(ee.Reducer.linearFit());
// Display the trend with increasing slopes in green, decreasing in red.
Map.setCenter(-96.943, 39.436, 5);
Map.addLayer(
trend,
{min: 0, max: [-100, 100, 10000], bands: ['scale', 'scale', 'offset']},
'EVI trend');
Python 设置
如需了解 Python API 以及如何使用 geemap
进行交互式开发,请参阅
Python 环境页面。
import ee
import geemap.core as geemap
Colab (Python)
# This function adds a band representing the image timestamp.
def add_time(image):
return image.addBands(
image.metadata('system:time_start')
# Convert milliseconds from epoch to years to aid in
# interpretation of the following trend calculation.
.divide(1000 * 60 * 60 * 24 * 365)
)
# Load a MODIS collection, filter to several years of 16 day mosaics,
# and map the time band function over it.
collection = (
ee.ImageCollection('MODIS/006/MYD13A1')
.filterDate('2004-01-01', '2010-10-31')
.map(add_time)
)
# Select the bands to model with the independent variable first.
trend = collection.select(['system:time_start', 'EVI']).reduce(
# Compute the linear trend over time.
ee.Reducer.linearFit()
)
# Display the trend with increasing slopes in green, decreasing in red.
m.set_center(-96.943, 39.436, 5)
m = geemap.Map()
m.add_layer(
trend,
{
'min': 0,
'max': [-100, 100, 10000],
'bands': ['scale', 'scale', 'offset'],
},
'EVI trend',
)
m
请注意,此示例中求和的输出是一个双带状图像,其中一个带状用于表示线性回归的斜率 (scale
),另一个带状用于表示截距 (offset
)。请浏览 API 文档,查看可用于将 ImageCollection
化简为单个 Image
的求和函数的列表。
复合体没有投影
通过缩减图片集合创建的复合图片能够在任何请求的投影中生成像素,因此没有固定的输出投影。
而是采用 WGS-84 的默认投影,分辨率为 1 度像素。系统会使用请求的任何输出投影来计算采用默认投影的复合项。请求的发生方式包括在代码编辑器中显示复合项(了解代码编辑器如何设置比例和投影),或在汇总(例如 ReduceRegion
或 Export
)中明确指定投影/比例。
如未另行说明,那么本页面中的内容已根据知识共享署名 4.0 许可获得了许可,并且代码示例已根据 Apache 2.0 许可获得了许可。有关详情,请参阅 Google 开发者网站政策。Java 是 Oracle 和/或其关联公司的注册商标。
最后更新时间 (UTC):2025-07-25。
[null,null,["最后更新时间 (UTC):2025-07-25。"],[[["\u003cp\u003eUse \u003ccode\u003eimageCollection.reduce()\u003c/code\u003e to composite images in an \u003ccode\u003eImageCollection\u003c/code\u003e into a single image representing a statistical summary (e.g., median, mean) of the collection.\u003c/p\u003e\n"],["\u003cp\u003eThe \u003ccode\u003ereduce()\u003c/code\u003e function utilizes reducers like \u003ccode\u003eee.Reducer.median()\u003c/code\u003e to calculate the desired composite, with band names reflecting the reducer used.\u003c/p\u003e\n"],["\u003cp\u003eMore complex reductions, such as calculating linear trends, are possible using specific reducers like \u003ccode\u003eee.Reducer.linearFit()\u003c/code\u003e.\u003c/p\u003e\n"],["\u003cp\u003eComposite images generated from reducing an image collection do not have a fixed projection and will be computed based on the requested output projection.\u003c/p\u003e\n"]]],[],null,["# Reducing an ImageCollection\n\nTo composite images in an `ImageCollection`, use\n`imageCollection.reduce()`. This will composite all the images in the\ncollection to a single image representing, for example, the min, max, mean or standard\ndeviation of the images.\n(See the [Reducers section](/earth-engine/guides/reducers_image_collection)\nfor more information about reducers). For example, to create a median value image from a\ncollection:\n\n### Code Editor (JavaScript)\n\n```javascript\n// Load a Landsat 8 collection for a single path-row.\nvar collection = ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')\n .filter(ee.Filter.eq('WRS_PATH', 44))\n .filter(ee.Filter.eq('WRS_ROW', 34))\n .filterDate('2014-01-01', '2015-01-01');\n\n// Compute a median image and display.\nvar median = collection.median();\nMap.setCenter(-122.3578, 37.7726, 12);\nMap.addLayer(median, {bands: ['B4', 'B3', 'B2'], max: 0.3}, 'Median');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Load a Landsat 8 collection for a single path-row.\ncollection = (\n ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')\n .filter(ee.Filter.eq('WRS_PATH', 44))\n .filter(ee.Filter.eq('WRS_ROW', 34))\n .filterDate('2014-01-01', '2015-01-01')\n)\n\n# Compute a median image and display.\nmedian = collection.median()\nm = geemap.Map()\nm.set_center(-122.3578, 37.7726, 12)\nm.add_layer(median, {'bands': ['B4', 'B3', 'B2'], 'max': 0.3}, 'Median')\nm\n```\n\nAt each location in the output image, in each band, the pixel value is the median of all\nunmasked pixels in the input imagery (the images in the collection). In the previous\nexample, `median()` is a convenience method for the following call:\n\n### Code Editor (JavaScript)\n\n```javascript\n// Reduce the collection with a median reducer.\nvar median = collection.reduce(ee.Reducer.median());\n\n// Display the median image.\nMap.addLayer(median,\n {bands: ['B4_median', 'B3_median', 'B2_median'], max: 0.3},\n 'Also median');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Reduce the collection with a median reducer.\nmedian = collection.reduce(ee.Reducer.median())\n\n# Display the median image.\nm.add_layer(\n median,\n {'bands': ['B4_median', 'B3_median', 'B2_median'], 'max': 0.3},\n 'Also median',\n)\nm\n```\n\nNote that the band names differ as a result of using `reduce()` instead of the\nconvenience method. Specifically, the names of the reducer have been appended to the\nband names.\n\nMore complex reductions are also possible using `reduce()`. For\nexample, to compute the long term linear trend over a collection, use one of the linear\nregression reducers. The following code computes the linear trend of MODIS Enhanced\nVegetation Index (EVI):\n\n### Code Editor (JavaScript)\n\n```javascript\n// This function adds a band representing the image timestamp.\nvar addTime = function(image) {\n return image.addBands(image.metadata('system:time_start')\n // Convert milliseconds from epoch to years to aid in\n // interpretation of the following trend calculation.\n .divide(1000 * 60 * 60 * 24 * 365));\n};\n\n// Load a MODIS collection, filter to several years of 16 day mosaics,\n// and map the time band function over it.\nvar collection = ee.ImageCollection('MODIS/006/MYD13A1')\n .filterDate('2004-01-01', '2010-10-31')\n .map(addTime);\n\n// Select the bands to model with the independent variable first.\nvar trend = collection.select(['system:time_start', 'EVI'])\n // Compute the linear trend over time.\n .reduce(ee.Reducer.linearFit());\n\n// Display the trend with increasing slopes in green, decreasing in red.\nMap.setCenter(-96.943, 39.436, 5);\nMap.addLayer(\n trend,\n {min: 0, max: [-100, 100, 10000], bands: ['scale', 'scale', 'offset']},\n 'EVI trend');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# This function adds a band representing the image timestamp.\ndef add_time(image):\n return image.addBands(\n image.metadata('system:time_start')\n # Convert milliseconds from epoch to years to aid in\n # interpretation of the following trend calculation.\n .divide(1000 * 60 * 60 * 24 * 365)\n )\n\n\n# Load a MODIS collection, filter to several years of 16 day mosaics,\n# and map the time band function over it.\ncollection = (\n ee.ImageCollection('MODIS/006/MYD13A1')\n .filterDate('2004-01-01', '2010-10-31')\n .map(add_time)\n)\n\n# Select the bands to model with the independent variable first.\ntrend = collection.select(['system:time_start', 'EVI']).reduce(\n # Compute the linear trend over time.\n ee.Reducer.linearFit()\n)\n\n# Display the trend with increasing slopes in green, decreasing in red.\nm.set_center(-96.943, 39.436, 5)\nm = geemap.Map()\nm.add_layer(\n trend,\n {\n 'min': 0,\n 'max': [-100, 100, 10000],\n 'bands': ['scale', 'scale', 'offset'],\n },\n 'EVI trend',\n)\nm\n```\n\nNote that the output of the reduction in this example is a two banded image\nwith one band for the slope of a linear regression (`scale`) and one band\nfor the intercept (`offset`). Explore the API documentation to see a list of\nthe reducers that are available to reduce an `ImageCollection` to a single\n`Image`.\n\nComposites have no projection\n-----------------------------\n\nComposite images created by reducing an image collection are able to produce pixels\nin any requested projection and therefore *have no fixed output projection* .\nInstead, composites have\n[the default\nprojection](/earth-engine/guides/projections#the-default-projection) of WGS-84 with 1-degree resolution pixels. Composites with the default\nprojection will be computed in whatever output projection is requested. A request\noccurs by displaying the composite in the Code Editor (learn about how the Code editor\nsets [scale](/earth-engine/guides/scale#scale-of-analysis) and\n[projection](/earth-engine/guides/projections)), or by explicitly specifying a\nprojection/scale as in an aggregation such as\n`ReduceRegion` or `Export`."]]