Annuncio: tutti i progetti non commerciali registrati per l'utilizzo di Earth Engine prima del 15 aprile 2025 devono verificare l'idoneità non commerciale per mantenere l'accesso a Earth Engine.
Gli oggetti ee.Image hanno un insieme di metodi relazionali, condizionali e booleani per
costruire espressioni di presa di decisione. I risultati di questi metodi sono utili per limitare
l'analisi a determinati pixel o regioni tramite il mascheramento, lo sviluppo di mappe classificate e la riassegnazione dei valori.
Per eseguire confronti pixel per pixel tra le immagini, utilizza gli operatori di relazione. Per
estrarre le aree urbanizzate in un'immagine, questo esempio utilizza gli operatori relazionali per impostare una soglia per gli indici spettrali, combinando le soglie con l'operatore and:
Come illustrato da questo esempio, l'output degli operatori relazionali e booleani è
true (1) o false (0). Per mascherare gli zeri, puoi mascherare l'immagine binaria risultante
con se stessa utilizzando selfMask().
NDVI e NDWI bassi (bianco) da Landsat 8, San Francisco, California, Stati Uniti.
Le immagini binarie restituite dagli operatori relazionali e booleani possono essere utilizzate con gli operatori matematici. Questo esempio crea zone di urbanizzazione in un'immagine notturna con luci utilizzando gli operatori relazionali e add():
Tieni presente che nell'esempio di espressione precedente viene fatto riferimento alla fascia di interesse utilizzando
la funzione b() anziché un dizionario di nomi di variabili. Scopri di più sulle espressioni delle immagini su questa pagina. L'utilizzo di operatori matematici o di un'espressione produrrà lo stesso risultato.
Zone arbitrarie di immagini notturne del 2012 per Parigi, in Francia.
Un altro modo per implementare operazioni condizionali sulle immagini è con l'operatore
where(). Valuta la necessità di sostituire i pixel mascherati con altri dati. Nell'esempio seguente, i pixel nuvolosi vengono sostituiti dai pixel di un'immagine senza nuvole utilizzando where():
[null,null,["Ultimo aggiornamento 2025-07-25 UTC."],[[["\u003cp\u003e\u003ccode\u003eee.Image\u003c/code\u003e objects have relational, conditional, and boolean methods for constructing decision-making expressions for image analysis.\u003c/p\u003e\n"],["\u003cp\u003eRelational operators (eq, gt, gte, lt, lte) enable per-pixel comparisons between images, useful for tasks like thresholding and masking.\u003c/p\u003e\n"],["\u003cp\u003eBoolean operators (and, or, not) combine and modify relational expressions, allowing for complex image analysis logic.\u003c/p\u003e\n"],["\u003cp\u003eConditional operators, such as \u003ccode\u003ewhere()\u003c/code\u003e, facilitate the replacement of pixel values based on specified conditions, like replacing cloudy pixels with clear ones.\u003c/p\u003e\n"],["\u003cp\u003e\u003ccode\u003eexpression()\u003c/code\u003e provides a flexible way to implement conditional operations using ternary operators, offering similar functionality to mathematical and conditional operators.\u003c/p\u003e\n"]]],[],null,["# Relational, Conditional, and Boolean Operations\n\n|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|\n| [Run in Google Colab](https://colab.research.google.com/github/google/earthengine-community/blob/master/guides/linked/generated/image_relational.ipynb) | [View source on GitHub](https://github.com/google/earthengine-community/blob/master/guides/linked/generated/image_relational.ipynb) |\n\n`ee.Image` objects have a set of relational, conditional, and boolean methods for\nconstructing decision-making expressions. The results of these methods are useful for limiting\nanalysis to certain pixels or regions through masking, developing classified maps, and value\nreassignment.\n\nRelational and boolean operators\n--------------------------------\n\n**Relational** methods include:\n\n`eq()`, `gt()`, `gte()`, `lt()`, and\n`lte()`\n\n**Boolean** methods include:\n\n### Code Editor (JavaScript)\n\n`and()`,`or()`, and `not()`\n\n### Colab (Python)\n\n`And()`,`Or()`, and `Not()`\n\nTo perform per-pixel comparisons between images, use relational operators. To\nextract urbanized areas in an image, this example uses relational operators to threshold\nspectral indices, combining the thresholds with the *and* operator:\n\n### Code Editor (JavaScript)\n\n```javascript\n// Load a Landsat 8 image.\nvar image = ee.Image('LANDSAT/LC08/C02/T1_TOA/LC08_044034_20140318');\n\n// Create NDVI and NDWI spectral indices.\nvar ndvi = image.normalizedDifference(['B5', 'B4']);\nvar ndwi = image.normalizedDifference(['B3', 'B5']);\n\n// Create a binary layer using logical operations.\nvar bare = ndvi.lt(0.2).and(ndwi.lt(0));\n\n// Mask and display the binary layer.\nMap.setCenter(-122.3578, 37.7726, 12);\nMap.setOptions('satellite');\nMap.addLayer(bare.selfMask(), {}, 'bare');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Load a Landsat 8 image.\nimage = ee.Image('LANDSAT/LC08/C02/T1_TOA/LC08_044034_20140318')\n\n# Create NDVI and NDWI spectral indices.\nndvi = image.normalizedDifference(['B5', 'B4'])\nndwi = image.normalizedDifference(['B3', 'B5'])\n\n# Create a binary layer using logical operations.\nbare = ndvi.lt(0.2).And(ndwi.lt(0))\n\n# Define a map centered on San Francisco Bay.\nmap_bare = geemap.Map(center=[37.7726, -122.3578], zoom=12)\n\n# Add the masked image layer to the map and display it.\nmap_bare.add_layer(bare.selfMask(), None, 'bare')\ndisplay(map_bare)\n```\n\nAs illustrated by this example, the output of relational and boolean operators is\neither true (1) or false (0). To mask the 0's, you can mask the resultant binary image\nwith itself using `selfMask()`.\nLow NDVI and low NDWI (white) from Landsat 8, San Francisco, California, USA.\n\nThe binary images that are returned by relational and boolean operators can be used with\nmathematical operators. This example creates zones of urbanization in a nighttime lights\nimage using relational operators and `add()`:\n\n### Code Editor (JavaScript)\n\n```javascript\n// Load a 2012 nightlights image.\nvar nl2012 = ee.Image('NOAA/DMSP-OLS/NIGHTTIME_LIGHTS/F182012');\nvar lights = nl2012.select('stable_lights');\n\n// Define arbitrary thresholds on the 6-bit stable lights band.\nvar zones = lights.gt(30).add(lights.gt(55)).add(lights.gt(62));\n\n// Display the thresholded image as three distinct zones near Paris.\nvar palette = ['000000', '0000FF', '00FF00', 'FF0000'];\nMap.setCenter(2.373, 48.8683, 8);\nMap.addLayer(zones, {min: 0, max: 3, palette: palette}, 'development zones');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Load a 2012 nightlights image.\nnl_2012 = ee.Image('NOAA/DMSP-OLS/NIGHTTIME_LIGHTS/F182012')\nlights = nl_2012.select('stable_lights')\n\n# Define arbitrary thresholds on the 6-bit stable lights band.\nzones = lights.gt(30).add(lights.gt(55)).add(lights.gt(62))\n\n# Define a map centered on Paris, France.\nmap_zones = geemap.Map(center=[48.8683, 2.373], zoom=8)\n\n# Display the thresholded image as three distinct zones near Paris.\npalette = ['000000', '0000FF', '00FF00', 'FF0000']\nmap_zones.add_layer(\n zones, {'min': 0, 'max': 3, 'palette': palette}, 'development zones'\n)\ndisplay(map_zones)\n```\n\nConditional operators\n---------------------\n\nNote that the code in the previous example is equivalent to using a\n[ternary operator](http://en.wikipedia.org/wiki/%3F:) implemented by\n`expression()`:\n\n### Code Editor (JavaScript)\n\n```javascript\n// Create zones using an expression, display.\nvar zonesExp = nl2012.expression(\n \"(b('stable_lights') \u003e 62) ? 3\" +\n \": (b('stable_lights') \u003e 55) ? 2\" +\n \": (b('stable_lights') \u003e 30) ? 1\" +\n \": 0\"\n);\nMap.addLayer(zonesExp,\n {min: 0, max: 3, palette: palette},\n 'development zones (ternary)');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Create zones using an expression, display.\nzones_exp = nl_2012.expression(\n \"(b('stable_lights') \u003e 62) ? 3 \"\n \": (b('stable_lights') \u003e 55) ? 2 \"\n \": (b('stable_lights') \u003e 30) ? 1 \"\n ': 0'\n)\n\n# Define a map centered on Paris, France.\nmap_zones_exp = geemap.Map(center=[48.8683, 2.373], zoom=8)\n\n# Add the image layer to the map and display it.\nmap_zones_exp.add_layer(\n zones_exp, {'min': 0, 'max': 3, 'palette': palette}, 'zones exp'\n)\ndisplay(map_zones_exp)\n```\n\nObserve that in the previous expression example, the band of interest is referenced using\nthe `b()` function, rather than a dictionary of variable names. Learn more\nabout image expressions on\n[this page](/earth-engine/guides/image_math#expressions). Using either mathematical\noperators or an expression will produce the same result.\nArbitrary zones of 2012 nightlights imagery for Paris, France.\n\nAnother way to implement conditional operations on images is with the\n`where()` operator. Consider the need to replace masked pixels with some\nother data. In the following example, cloudy pixels are replaced by pixels from a\ncloud-free image using `where()`:\n\n### Code Editor (JavaScript)\n\n```javascript\n// Load a cloudy Sentinel-2 image.\nvar image = ee.Image(\n 'COPERNICUS/S2_SR/20210114T185729_20210114T185730_T10SEG');\nMap.addLayer(image,\n {bands: ['B4', 'B3', 'B2'], min: 0, max: 2000},\n 'original image');\n\n// Load another image to replace the cloudy pixels.\nvar replacement = ee.Image(\n 'COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG');\n\n// Set cloudy pixels (greater than 5% probability) to the other image.\nvar replaced = image.where(image.select('MSK_CLDPRB').gt(5), replacement);\n\n// Display the result.\nMap.setCenter(-122.3769, 37.7349, 11);\nMap.addLayer(replaced,\n {bands: ['B4', 'B3', 'B2'], min: 0, max: 2000},\n 'clouds replaced');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Load a cloudy Sentinel-2 image.\nimage = ee.Image('COPERNICUS/S2_SR/20210114T185729_20210114T185730_T10SEG')\n\n# Load another image to replace the cloudy pixels.\nreplacement = ee.Image(\n 'COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG'\n)\n\n# Set cloudy pixels (greater than 5% probability) to the other image.\nreplaced = image.where(image.select('MSK_CLDPRB').gt(5), replacement)\n\n# Define a map centered on San Francisco Bay.\nmap_replaced = geemap.Map(center=[37.7349, -122.3769], zoom=11)\n\n# Display the images on a map.\nvis_params = {'bands': ['B4', 'B3', 'B2'], 'min': 0, 'max': 2000}\nmap_replaced.add_layer(image, vis_params, 'original image')\nmap_replaced.add_layer(replaced, vis_params, 'clouds replaced')\ndisplay(map_replaced)\n```"]]