公告:凡是在
2025 年 4 月 15 日前註冊使用 Earth Engine 的非商業專案,都必須
驗證非商業用途資格,才能繼續存取 Earth Engine。
開始使用 Python 適用的 Earth Engine
透過集合功能整理內容
你可以依據偏好儲存及分類內容。
本快速入門課程將透過互動式介面,介紹如何使用 Earth Engine Python 介面,呈現及分析地理空間資料。
事前準備
註冊或建立 Google Cloud 專案,系統會提示您完成下列步驟。如果您已註冊 Earth Engine 存取權的專案,請跳至下一個部分。
筆記本設定
您可以使用 Jupyter 筆記本使用 Earth Engine,並以互動方式探索結果。最快的開始方式,就是使用 Google Colab 筆記本中的筆記本。您可以
開啟新的筆記本,並將下列程式碼片段複製到個別儲存格,或是使用預先填入的
Earth Engine Python 快速入門筆記本。
- 匯入 Earth Engine 和 geemap 程式庫。
import ee
import geemap.core as geemap
- 驗證並初始化 Earth Engine 服務。請按照隨後顯示的提示完成驗證。請務必將 PROJECT_ID 替換為您為這個快速入門導覽課程設定的專案名稱。
ee.Authenticate()
ee.Initialize(project='PROJECT_ID')
在地圖中新增光柵資料
- 載入指定期間的氣候資料,並顯示其中繼資料。
jan_2023_climate = (
ee.ImageCollection('ECMWF/ERA5_LAND/MONTHLY_AGGR')
.filterDate('2023-01', '2023-02')
.first()
)
jan_2023_climate
- 將地圖物件例項化,並將溫度帶新增為具有特定視覺化屬性的圖層。顯示地圖。
m = geemap.Map(center=[30, 0], zoom=2)
vis_params = {
'bands': ['temperature_2m'],
'min': 229,
'max': 304,
'palette': 'inferno',
}
m.add_layer(jan_2023_climate, vis_params, 'Temperature (K)')
m
在地圖中加入向量資料
- 建立向量資料物件,其中包含三個城市的路線點。
cities = ee.FeatureCollection([
ee.Feature(ee.Geometry.Point(10.75, 59.91), {'city': 'Oslo'}),
ee.Feature(ee.Geometry.Point(-118.24, 34.05), {'city': 'Los Angeles'}),
ee.Feature(ee.Geometry.Point(103.83, 1.33), {'city': 'Singapore'}),
])
cities
- 將城市地點新增至地圖並重新顯示。
m.add_layer(cities, name='Cities')
m
擷取資料並以圖表呈現
- 匯入 Altair 圖表程式庫。
%pip install -q --upgrade altair
import altair as alt
- 將三個城市的氣候資料擷取為 pandas DataFrame。
city_climates = jan_2023_climate.reduceRegions(cities, ee.Reducer.first())
city_climates_dataframe = ee.data.computeFeatures(
{'expression': city_climates, 'fileFormat': 'PANDAS_DATAFRAME'}
)
city_climates_dataframe
- 以長條圖繪製各城市的溫度。
alt.Chart(city_climates_dataframe).mark_bar(size=100).encode(
alt.X('city:N', sort='y', axis=alt.Axis(labelAngle=0), title='City'),
alt.Y('temperature_2m:Q', title='Temperature (K)'),
tooltip=[
alt.Tooltip('city:N', title='City'),
alt.Tooltip('temperature_2m:Q', title='Temperature (K)'),
],
).properties(title='January 2023 temperature for selected cities', width=500)
後續步驟
除非另有註明,否則本頁面中的內容是採用創用 CC 姓名標示 4.0 授權,程式碼範例則為阿帕契 2.0 授權。詳情請參閱《Google Developers 網站政策》。Java 是 Oracle 和/或其關聯企業的註冊商標。
上次更新時間:2025-07-25 (世界標準時間)。
[null,null,["上次更新時間:2025-07-25 (世界標準時間)。"],[[["\u003cp\u003eThis quickstart provides an interactive introduction to visualizing and analyzing geospatial data using the Earth Engine Python interface within a Jupyter notebook environment like Google Colab.\u003c/p\u003e\n"],["\u003cp\u003eUsers will learn to add both raster and vector data to an interactive map, visualizing climate data and city locations as examples.\u003c/p\u003e\n"],["\u003cp\u003eThe guide demonstrates data extraction and charting by retrieving climate data for specific cities and creating a bar chart using the Altair library.\u003c/p\u003e\n"],["\u003cp\u003eBefore starting, users need a Google Cloud Project registered for Earth Engine access, and the quickstart provides instructions for setting one up.\u003c/p\u003e\n"],["\u003cp\u003eFurther learning resources on Earth Engine objects, processing environments, machine learning capabilities, and data export to BigQuery are linked at the end.\u003c/p\u003e\n"]]],[],null,["# Get started with Earth Engine for Python\n\n|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|\n| [Run in Google Colab](https://colab.research.google.com/github/google/earthengine-community/blob/master/guides/linked/generated/quickstart_python.ipynb) | [View source on GitHub](https://github.com/google/earthengine-community/blob/master/guides/linked/generated/quickstart_python.ipynb) |\n\nThis quickstart will give you an interactive introduction to visualizing and\nanalyzing geospatial data with the Earth Engine Python interface.\n\nBefore you begin\n----------------\n\n\n[Register or create](https://console.cloud.google.com/earth-engine) a Google Cloud\nProject; you'll be prompted to complete the following steps. If you already have a project\nregistered for Earth Engine access, skip to the next section.\n\n- Select the project's purpose: commercial or noncommercial.\n- If the purpose is noncommercial, select a project type.\n- Create a new Google Cloud project or select an existing project.\n- If the purpose is commercial, verify or set up billing for your project.\n- Confirm your project information. \n\n **Note:** If you don't plan to keep the resources that you create\n in this procedure, create a project instead of selecting an existing project. After you finish\n these steps, you can\n [delete the project](https://cloud.google.com/resource-manager/docs/creating-managing-projects#shutting_down_projects),\n removing all resources owned by the project.\n\nNotebook setup\n--------------\n\nJupyter notebooks allow you to use Earth Engine and explore results interactively. The quickest way to get started is with a notebook in Google Colab notebook. You can either [**open a new notebook**](https://colab.new/) and copy the following code chunks into individual cells or use the prefilled [**Earth Engine Python Quickstart notebook**](https://colab.sandbox.google.com/github/google/earthengine-community/blob/master/guides/linked/generated/quickstart_python.ipynb).\n\n1. Import the Earth Engine and geemap libraries. \n\n ```python\n import ee\n import geemap.core as geemap\n ```\n\n\n2. Authenticate and initialize the Earth Engine service. Follow the resulting prompts to complete authentication. Be sure to replace PROJECT_ID with the name of the project you set up for this quickstart. \n\n ```python\n ee.Authenticate()\n ee.Initialize(project='PROJECT_ID')\n ```\n\nAdd raster data to a map\n------------------------\n\n\n1. Load climate data for a given period and display its metadata. \n\n ```python\n jan_2023_climate = (\n ee.ImageCollection('ECMWF/ERA5_LAND/MONTHLY_AGGR')\n .filterDate('2023-01', '2023-02')\n .first()\n )\n jan_2023_climate\n ```\n\n\n2. Instantiate a map object and add the temperature band as a layer with specific visualization properties. Display the map. \n\n ```python\n m = geemap.Map(center=[30, 0], zoom=2)\n\n vis_params = {\n 'bands': ['temperature_2m'],\n 'min': 229,\n 'max': 304,\n 'palette': 'inferno',\n }\n m.add_layer(jan_2023_climate, vis_params, 'Temperature (K)')\n m\n ```\n\nAdd vector data to a map\n------------------------\n\n1. Create a vector data object with points for three cities. \n\n ```python\n cities = ee.FeatureCollection([\n ee.Feature(ee.Geometry.Point(10.75, 59.91), {'city': 'Oslo'}),\n ee.Feature(ee.Geometry.Point(-118.24, 34.05), {'city': 'Los Angeles'}),\n ee.Feature(ee.Geometry.Point(103.83, 1.33), {'city': 'Singapore'}),\n ])\n cities\n ```\n\n\u003c!-- --\u003e\n\n2. Add the city locations to the map and redisplay it. \n\n ```python\n m.add_layer(cities, name='Cities')\n m\n ```\n\nExtract and chart data\n----------------------\n\n1. Import the Altair charting library. \n\n ```python\n %pip install -q --upgrade altair\n import altair as alt\n ```\n\n\n2. Extract the climate data for the three cities as a pandas DataFrame. \n\n ```python\n city_climates = jan_2023_climate.reduceRegions(cities, ee.Reducer.first())\n\n city_climates_dataframe = ee.data.computeFeatures(\n {'expression': city_climates, 'fileFormat': 'PANDAS_DATAFRAME'}\n )\n city_climates_dataframe\n ```\n\n\u003c!-- --\u003e\n\n3. Plot the temperature for the cities as a bar chart. \n\n ```python\n alt.Chart(city_climates_dataframe).mark_bar(size=100).encode(\n alt.X('city:N', sort='y', axis=alt.Axis(labelAngle=0), title='City'),\n alt.Y('temperature_2m:Q', title='Temperature (K)'),\n tooltip=[\n alt.Tooltip('city:N', title='City'),\n alt.Tooltip('temperature_2m:Q', title='Temperature (K)'),\n ],\n ).properties(title='January 2023 temperature for selected cities', width=500)\n ```\n\nWhat's next\n-----------\n\n- Learn about analyzing data with Earth Engine's [objects and methods](/earth-engine/guides/objects_methods_overview).\n- Learn about Earth Engine's [processing environments](/earth-engine/guides/processing_environments).\n- Learn about Earth Engine's [machine learning capabilities](/earth-engine/guides/machine-learning).\n- Learn how to [export your computation results to BigQuery](/earth-engine/guides/exporting_to_bigquery)."]]