Reduções agrupadas e estatísticas zonais

É possível receber estatísticas em cada zona de um Image ou FeatureCollection usando reducer.group() para agrupar a saída de um redutor pelo valor de uma entrada especificada. Por exemplo, para calcular a população total e o número de unidades habitacionais em cada estado, este exemplo agrupa a saída de uma redução de um bloco de censo FeatureCollection da seguinte maneira:

Editor de código (JavaScript)

// Load a collection of US census blocks.
var blocks = ee.FeatureCollection('TIGER/2010/Blocks');

// Compute sums of the specified properties, grouped by state code.
var sums = blocks
  .filter(ee.Filter.and(
    ee.Filter.neq('pop10', null),
    ee.Filter.neq('housing10', null)))
  .reduceColumns({
    selectors: ['pop10', 'housing10', 'statefp10'],
    reducer: ee.Reducer.sum().repeat(2).group({
      groupField: 2,
      groupName: 'state-code',
    })
});

// Print the resultant Dictionary.
print(sums);

Configuração do Python

Consulte a página Ambiente Python para informações sobre a API Python e o uso de geemap para desenvolvimento interativo.

import ee
import geemap.core as geemap

Colab (Python)

# Load a collection of US census blocks.
blocks = ee.FeatureCollection('TIGER/2010/Blocks')

# Compute sums of the specified properties, grouped by state code.
sums = blocks.filter(
    ee.Filter.And(
        ee.Filter.neq('pop10', None), ee.Filter.neq('housing10', None)
    )
).reduceColumns(
    selectors=['pop10', 'housing10', 'statefp10'],
    reducer=ee.Reducer.sum()
    .repeat(2)
    .group(groupField=2, groupName='state-code'),
)

# Print the resultant Dictionary.
display(sums)

O argumento groupField é o índice da entrada no array de seletores que contém os códigos para agrupar. O argumento groupName especifica o nome da propriedade para armazenar o valor da variável de agrupamento. Como o redutor não é repetido automaticamente para cada entrada, a chamada repeat(2) é necessária.

Para agrupar a saída de image.reduceRegions(), especifique uma faixa de agrupamento que define grupos por valores de pixel inteiros. Esse tipo de cálculo às vezes é chamado de "estatísticas zonais", em que as zonas são especificadas como a faixa de agrupamento e a estatística é determinada pelo redutor. No exemplo abaixo, a mudança nas luzes noturnas nos Estados Unidos é agrupada por categoria de cobertura de solo:

Editor de código (JavaScript)

// Load a region representing the United States
var region = ee.FeatureCollection('USDOS/LSIB_SIMPLE/2017')
  .filter(ee.Filter.eq('country_na', 'United States'));

// Load MODIS land cover categories in 2001.
var landcover = ee.Image('MODIS/051/MCD12Q1/2001_01_01')
  // Select the IGBP classification band.
  .select('Land_Cover_Type_1');

// Load nightlights image inputs.
var nl2001 = ee.Image('NOAA/DMSP-OLS/NIGHTTIME_LIGHTS/F152001')
  .select('stable_lights');
var nl2012 = ee.Image('NOAA/DMSP-OLS/NIGHTTIME_LIGHTS/F182012')
  .select('stable_lights');

// Compute the nightlights decadal difference, add land cover codes.
var nlDiff = nl2012.subtract(nl2001).addBands(landcover);

// Grouped a mean reducer: change of nightlights by land cover category.
var means = nlDiff.reduceRegion({
  reducer: ee.Reducer.mean().group({
    groupField: 1,
    groupName: 'code',
  }),
  geometry: region.geometry(),
  scale: 1000,
  maxPixels: 1e8
});

// Print the resultant Dictionary.
print(means);

Configuração do Python

Consulte a página Ambiente Python para informações sobre a API Python e o uso de geemap para desenvolvimento interativo.

import ee
import geemap.core as geemap

Colab (Python)

# Load a region representing the United States
region = ee.FeatureCollection('USDOS/LSIB_SIMPLE/2017').filter(
    ee.Filter.eq('country_na', 'United States')
)

# Load MODIS land cover categories in 2001.
landcover = ee.Image('MODIS/051/MCD12Q1/2001_01_01').select(
    # Select the IGBP classification band.
    'Land_Cover_Type_1'
)

# Load nightlights image inputs.
nl_2001 = ee.Image('NOAA/DMSP-OLS/NIGHTTIME_LIGHTS/F152001').select(
    'stable_lights'
)
nl_2012 = ee.Image('NOAA/DMSP-OLS/NIGHTTIME_LIGHTS/F182012').select(
    'stable_lights'
)

# Compute the nightlights decadal difference, add land cover codes.
nl_diff = nl_2012.subtract(nl_2001).addBands(landcover)

# Grouped a mean reducer: change of nightlights by land cover category.
means = nl_diff.reduceRegion(
    reducer=ee.Reducer.mean().group(groupField=1, groupName='code'),
    geometry=region.geometry(),
    scale=1000,
    maxPixels=1e8,
)

# Print the resultant Dictionary.
display(means)

Neste exemplo, groupField é o índice da faixa que contém as zonas para agrupar a saída. A primeira faixa é o índice 0, a segunda é o índice 1 e assim por diante.