公告:凡是在
2025 年 4 月 15 日前註冊使用 Earth Engine 的非商業專案,都必須
驗證非商業用途資格,才能繼續存取 Earth Engine。
分組減量和區域統計
透過集合功能整理內容
你可以依據偏好儲存及分類內容。
您可以使用 reducer.group()
依指定輸入內容的值,將 Image
或 FeatureCollection
的每個區域分組,藉此取得統計資料。舉例來說,為了計算各州的總人口數和住房單位數,這個範例會將人口普查區塊 FeatureCollection
的縮減結果分組,如下所示:
程式碼編輯器 (JavaScript)
// Load a collection of US census blocks.
var blocks = ee.FeatureCollection('TIGER/2010/Blocks');
// Compute sums of the specified properties, grouped by state code.
var sums = blocks
.filter(ee.Filter.and(
ee.Filter.neq('pop10', null),
ee.Filter.neq('housing10', null)))
.reduceColumns({
selectors: ['pop10', 'housing10', 'statefp10'],
reducer: ee.Reducer.sum().repeat(2).group({
groupField: 2,
groupName: 'state-code',
})
});
// Print the resultant Dictionary.
print(sums);
Python 設定
請參閱「
Python 環境」頁面,瞭解 Python API 和如何使用 geemap
進行互動式開發。
import ee
import geemap.core as geemap
Colab (Python)
# Load a collection of US census blocks.
blocks = ee.FeatureCollection('TIGER/2010/Blocks')
# Compute sums of the specified properties, grouped by state code.
sums = blocks.filter(
ee.Filter.And(
ee.Filter.neq('pop10', None), ee.Filter.neq('housing10', None)
)
).reduceColumns(
selectors=['pop10', 'housing10', 'statefp10'],
reducer=ee.Reducer.sum()
.repeat(2)
.group(groupField=2, groupName='state-code'),
)
# Print the resultant Dictionary.
display(sums)
groupField
引數是選取器陣列中輸入項目的索引,其中包含用於分組的代碼;groupName
引數則指定儲存分組變數值的屬性名稱。由於系統不會自動針對每個輸入內容重複執行縮減器,因此需要 repeat(2)
呼叫。
如要將 image.reduceRegions()
的輸出內容分組,您可以指定分組頻帶,以整數像素值定義群組。這類運算有時稱為「區域統計資料」,其中區域會指定為分組頻帶,而統計資料則由縮減器決定。在以下範例中,美國的夜間燈光變化會依土地覆蓋率類別分組:
程式碼編輯器 (JavaScript)
// Load a region representing the United States
var region = ee.FeatureCollection('USDOS/LSIB_SIMPLE/2017')
.filter(ee.Filter.eq('country_na', 'United States'));
// Load MODIS land cover categories in 2001.
var landcover = ee.Image('MODIS/051/MCD12Q1/2001_01_01')
// Select the IGBP classification band.
.select('Land_Cover_Type_1');
// Load nightlights image inputs.
var nl2001 = ee.Image('NOAA/DMSP-OLS/NIGHTTIME_LIGHTS/F152001')
.select('stable_lights');
var nl2012 = ee.Image('NOAA/DMSP-OLS/NIGHTTIME_LIGHTS/F182012')
.select('stable_lights');
// Compute the nightlights decadal difference, add land cover codes.
var nlDiff = nl2012.subtract(nl2001).addBands(landcover);
// Grouped a mean reducer: change of nightlights by land cover category.
var means = nlDiff.reduceRegion({
reducer: ee.Reducer.mean().group({
groupField: 1,
groupName: 'code',
}),
geometry: region.geometry(),
scale: 1000,
maxPixels: 1e8
});
// Print the resultant Dictionary.
print(means);
Python 設定
請參閱「
Python 環境」頁面,瞭解 Python API 和如何使用 geemap
進行互動式開發。
import ee
import geemap.core as geemap
Colab (Python)
# Load a region representing the United States
region = ee.FeatureCollection('USDOS/LSIB_SIMPLE/2017').filter(
ee.Filter.eq('country_na', 'United States')
)
# Load MODIS land cover categories in 2001.
landcover = ee.Image('MODIS/051/MCD12Q1/2001_01_01').select(
# Select the IGBP classification band.
'Land_Cover_Type_1'
)
# Load nightlights image inputs.
nl_2001 = ee.Image('NOAA/DMSP-OLS/NIGHTTIME_LIGHTS/F152001').select(
'stable_lights'
)
nl_2012 = ee.Image('NOAA/DMSP-OLS/NIGHTTIME_LIGHTS/F182012').select(
'stable_lights'
)
# Compute the nightlights decadal difference, add land cover codes.
nl_diff = nl_2012.subtract(nl_2001).addBands(landcover)
# Grouped a mean reducer: change of nightlights by land cover category.
means = nl_diff.reduceRegion(
reducer=ee.Reducer.mean().group(groupField=1, groupName='code'),
geometry=region.geometry(),
scale=1000,
maxPixels=1e8,
)
# Print the resultant Dictionary.
display(means)
請注意,在本範例中,groupField
是包含區域的頻帶索引,可用於將輸出內容分組。第一個頻帶的索引為 0,第二個為 1,以此類推。
除非另有註明,否則本頁面中的內容是採用創用 CC 姓名標示 4.0 授權,程式碼範例則為阿帕契 2.0 授權。詳情請參閱《Google Developers 網站政策》。Java 是 Oracle 和/或其關聯企業的註冊商標。
上次更新時間:2025-07-25 (世界標準時間)。
[null,null,["上次更新時間:2025-07-25 (世界標準時間)。"],[[["\u003cp\u003eUse \u003ccode\u003ereducer.group()\u003c/code\u003e with \u003ccode\u003ereduceColumns()\u003c/code\u003e on \u003ccode\u003eFeatureCollection\u003c/code\u003e to compute statistics for groups based on a property, like calculating total population per state.\u003c/p\u003e\n"],["\u003cp\u003eUtilize \u003ccode\u003ereducer.group()\u003c/code\u003e with \u003ccode\u003ereduceRegion()\u003c/code\u003e on \u003ccode\u003eImage\u003c/code\u003e to compute zonal statistics, such as averaging nightlight changes within different land cover categories.\u003c/p\u003e\n"],["\u003cp\u003eSpecify the \u003ccode\u003egroupField\u003c/code\u003e argument in \u003ccode\u003ereducer.group()\u003c/code\u003e as the index of the selector or band containing the grouping categories.\u003c/p\u003e\n"],["\u003cp\u003eThe \u003ccode\u003egroupName\u003c/code\u003e argument in \u003ccode\u003ereducer.group()\u003c/code\u003e determines the name of the property storing the grouping variable's value in the output dictionary.\u003c/p\u003e\n"],["\u003cp\u003eRemember to use \u003ccode\u003erepeat()\u003c/code\u003e with \u003ccode\u003ereduceColumns()\u003c/code\u003e when applying multiple reducers, ensuring calculations are performed for each selected property.\u003c/p\u003e\n"]]],[],null,["# Grouped Reductions and Zonal Statistics\n\nYou can get statistics in each zone of an `Image` or\n`FeatureCollection` by using `reducer.group()` to group the output\nof a reducer by the value of a specified input. For example, to compute the total\npopulation and number of housing units in each state, this example groups the output of\na reduction of a census block `FeatureCollection` as follows:\n\n### Code Editor (JavaScript)\n\n```javascript\n// Load a collection of US census blocks.\nvar blocks = ee.FeatureCollection('TIGER/2010/Blocks');\n\n// Compute sums of the specified properties, grouped by state code.\nvar sums = blocks\n .filter(ee.Filter.and(\n ee.Filter.neq('pop10', null),\n ee.Filter.neq('housing10', null)))\n .reduceColumns({\n selectors: ['pop10', 'housing10', 'statefp10'],\n reducer: ee.Reducer.sum().repeat(2).group({\n groupField: 2,\n groupName: 'state-code',\n })\n});\n\n// Print the resultant Dictionary.\nprint(sums);\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Load a collection of US census blocks.\nblocks = ee.FeatureCollection('TIGER/2010/Blocks')\n\n# Compute sums of the specified properties, grouped by state code.\nsums = blocks.filter(\n ee.Filter.And(\n ee.Filter.neq('pop10', None), ee.Filter.neq('housing10', None)\n )\n).reduceColumns(\n selectors=['pop10', 'housing10', 'statefp10'],\n reducer=ee.Reducer.sum()\n .repeat(2)\n .group(groupField=2, groupName='state-code'),\n)\n\n# Print the resultant Dictionary.\ndisplay(sums)\n```\n\nThe `groupField` argument is the index of the input in the selectors array\nthat contains the codes by which to group, the `groupName` argument specifies\nthe name of the property to store the value of the grouping variable. Since the reducer\nis not automatically repeated for each input, the `repeat(2)` call is needed.\n\nTo group output of `image.reduceRegions()` you can specify a grouping band\nthat defines groups by integer pixel values. This type of computation is sometimes called\n\"zonal statistics\" where the zones are specified as the grouping band and the statistic\nis determined by the reducer. In the following example, change in nightlights in the\nUnited States is grouped by land cover category:\n\n### Code Editor (JavaScript)\n\n```javascript\n// Load a region representing the United States\nvar region = ee.FeatureCollection('USDOS/LSIB_SIMPLE/2017')\n .filter(ee.Filter.eq('country_na', 'United States'));\n\n// Load MODIS land cover categories in 2001.\nvar landcover = ee.Image('MODIS/051/MCD12Q1/2001_01_01')\n // Select the IGBP classification band.\n .select('Land_Cover_Type_1');\n\n// Load nightlights image inputs.\nvar nl2001 = ee.Image('NOAA/DMSP-OLS/NIGHTTIME_LIGHTS/F152001')\n .select('stable_lights');\nvar nl2012 = ee.Image('NOAA/DMSP-OLS/NIGHTTIME_LIGHTS/F182012')\n .select('stable_lights');\n\n// Compute the nightlights decadal difference, add land cover codes.\nvar nlDiff = nl2012.subtract(nl2001).addBands(landcover);\n\n// Grouped a mean reducer: change of nightlights by land cover category.\nvar means = nlDiff.reduceRegion({\n reducer: ee.Reducer.mean().group({\n groupField: 1,\n groupName: 'code',\n }),\n geometry: region.geometry(),\n scale: 1000,\n maxPixels: 1e8\n});\n\n// Print the resultant Dictionary.\nprint(means);\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Load a region representing the United States\nregion = ee.FeatureCollection('USDOS/LSIB_SIMPLE/2017').filter(\n ee.Filter.eq('country_na', 'United States')\n)\n\n# Load MODIS land cover categories in 2001.\nlandcover = ee.Image('MODIS/051/MCD12Q1/2001_01_01').select(\n # Select the IGBP classification band.\n 'Land_Cover_Type_1'\n)\n\n# Load nightlights image inputs.\nnl_2001 = ee.Image('NOAA/DMSP-OLS/NIGHTTIME_LIGHTS/F152001').select(\n 'stable_lights'\n)\nnl_2012 = ee.Image('NOAA/DMSP-OLS/NIGHTTIME_LIGHTS/F182012').select(\n 'stable_lights'\n)\n\n# Compute the nightlights decadal difference, add land cover codes.\nnl_diff = nl_2012.subtract(nl_2001).addBands(landcover)\n\n# Grouped a mean reducer: change of nightlights by land cover category.\nmeans = nl_diff.reduceRegion(\n reducer=ee.Reducer.mean().group(groupField=1, groupName='code'),\n geometry=region.geometry(),\n scale=1000,\n maxPixels=1e8,\n)\n\n# Print the resultant Dictionary.\ndisplay(means)\n```\n\nNote that in this example, the `groupField` is the index of the band\ncontaining the zones by which to group the output. The first band is index 0, the second\nis index 1, etc."]]