Por padrão, os redutores aplicados a imagens ponderam as entradas de acordo com o valor da máscara.
Isso é relevante no contexto de pixels fracionários criados por operações como
clip()
. Ajuste esse comportamento chamando unweighted()
no
redutor. O uso de um redutor não ponderado força todos os pixels na região a ter o mesmo
peso. O exemplo a seguir ilustra como a ponderação de pixels pode afetar a saída do redutor:
Editor de código (JavaScript)
// Load a Landsat 8 input image. var image = ee.Image('LANDSAT/LC08/C02/T1/LC08_044034_20140318'); // Create an arbitrary region. var geometry = ee.Geometry.Rectangle(-122.496, 37.532, -121.554, 37.538); // Make an NDWI image. It will have one band named 'nd'. var ndwi = image.normalizedDifference(['B3', 'B5']); // Compute the weighted mean of the NDWI image clipped to the region. var weighted = ndwi.clip(geometry) .reduceRegion({ reducer: ee.Reducer.mean(), geometry: geometry, scale: 30}) .get('nd'); // Compute the UN-weighted mean of the NDWI image clipped to the region. var unweighted = ndwi.clip(geometry) .reduceRegion({ reducer: ee.Reducer.mean().unweighted(), geometry: geometry, scale: 30}) .get('nd'); // Observe the difference between weighted and unweighted reductions. print('weighted:', weighted); print('unweighted', unweighted);
import ee import geemap.core as geemap
Colab (Python)
# Load a Landsat 8 input image. image = ee.Image('LANDSAT/LC08/C02/T1/LC08_044034_20140318') # Create an arbitrary region. geometry = ee.Geometry.Rectangle(-122.496, 37.532, -121.554, 37.538) # Make an NDWI image. It will have one band named 'nd'. ndwi = image.normalizedDifference(['B3', 'B5']) # Compute the weighted mean of the NDWI image clipped to the region. weighted = ( ndwi.clip(geometry) .reduceRegion(reducer=ee.Reducer.mean(), geometry=geometry, scale=30) .get('nd') ) # Compute the UN-weighted mean of the NDWI image clipped to the region. unweighted = ( ndwi.clip(geometry) .reduceRegion( reducer=ee.Reducer.mean().unweighted(), geometry=geometry, scale=30 ) .get('nd') ) # Observe the difference between weighted and unweighted reductions. display('weighted:', weighted) display('unweighted', unweighted)
A diferença nos resultados é devido aos pixels na borda da região receberem um peso
de um como resultado da chamada de unweighted()
no redutor.
Para receber uma saída ponderada explicitamente, é preferível definir os pesos
explicitamente com splitWeights()
chamado no redutor. Um redutor modificado por
splitWeights()
recebe duas entradas, em que a segunda entrada é o peso. O exemplo a seguir ilustra splitWeights()
calculando o índice de vegetação por diferença normalizada (NDVI, na sigla em inglês) médio ponderado em uma região, com os pesos fornecidos pela pontuação de nuvens (quanto mais nublado, menor o peso):
Editor de código (JavaScript)
// Load an input Landsat 8 image. var image = ee.Image('LANDSAT/LC08/C02/T1_TOA/LC08_186059_20130419'); // Compute cloud score and reverse it such that the highest // weight (100) is for the least cloudy pixels. var cloudWeight = ee.Image(100).subtract( ee.Algorithms.Landsat.simpleCloudScore(image).select(['cloud'])); // Compute NDVI and add the cloud weight band. var ndvi = image.normalizedDifference(['B5', 'B4']).addBands(cloudWeight); // Define an arbitrary region in a cloudy area. var region = ee.Geometry.Rectangle(9.9069, 0.5981, 10.5, 0.9757); // Use a mean reducer. var reducer = ee.Reducer.mean(); // Compute the unweighted mean. var unweighted = ndvi.select(['nd']).reduceRegion(reducer, region, 30); // compute mean weighted by cloudiness. var weighted = ndvi.reduceRegion(reducer.splitWeights(), region, 30); // Observe the difference as a result of weighting by cloudiness. print('unweighted:', unweighted); print('weighted:', weighted);
import ee import geemap.core as geemap
Colab (Python)
# Load an input Landsat 8 image. image = ee.Image('LANDSAT/LC08/C02/T1_TOA/LC08_186059_20130419') # Compute cloud score and reverse it such that the highest # weight (100) is for the least cloudy pixels. cloud_weight = ee.Image(100).subtract( ee.Algorithms.Landsat.simpleCloudScore(image).select(['cloud']) ) # Compute NDVI and add the cloud weight band. ndvi = image.normalizedDifference(['B5', 'B4']).addBands(cloud_weight) # Define an arbitrary region in a cloudy area. region = ee.Geometry.Rectangle(9.9069, 0.5981, 10.5, 0.9757) # Use a mean reducer. reducer = ee.Reducer.mean() # Compute the unweighted mean. unweighted = ndvi.select(['nd']).reduceRegion(reducer, region, 30) # compute mean weighted by cloudiness. weighted = ndvi.reduceRegion(reducer.splitWeights(), region, 30) # Observe the difference as a result of weighting by cloudiness. display('unweighted:', unweighted) display('weighted:', weighted)
Observe que cloudWeight
precisa ser adicionado como uma faixa antes de chamar
reduceRegion()
. O resultado indica que a NDVI média estimada é
maior devido à diminuição do peso dos pixels nublados.