โดยค่าเริ่มต้น ตัวลดที่ใช้กับภาพจะถ่วงน้ำหนักอินพุตตามค่ามาสก์
ซึ่งเกี่ยวข้องกับบริบทของพิกเซลเศษส่วนที่สร้างขึ้นผ่านการดำเนินการต่างๆ เช่น
clip()
ปรับลักษณะการทำงานนี้โดยการเรียกใช้ unweighted()
ในรีดิวเซอร์ การใช้ตัวลดที่ไม่ถ่วงน้ำหนักจะบังคับให้พิกเซลทั้งหมดในภูมิภาคมีน้ำหนักเท่ากัน ตัวอย่างต่อไปนี้แสดงให้เห็นว่าน้ำหนักพิกเซลส่งผลต่อเอาต์พุตของตัวลดขนาดอย่างไร
เครื่องมือแก้ไขโค้ด (JavaScript)
// Load a Landsat 8 input image. var image = ee.Image('LANDSAT/LC08/C02/T1/LC08_044034_20140318'); // Create an arbitrary region. var geometry = ee.Geometry.Rectangle(-122.496, 37.532, -121.554, 37.538); // Make an NDWI image. It will have one band named 'nd'. var ndwi = image.normalizedDifference(['B3', 'B5']); // Compute the weighted mean of the NDWI image clipped to the region. var weighted = ndwi.clip(geometry) .reduceRegion({ reducer: ee.Reducer.mean(), geometry: geometry, scale: 30}) .get('nd'); // Compute the UN-weighted mean of the NDWI image clipped to the region. var unweighted = ndwi.clip(geometry) .reduceRegion({ reducer: ee.Reducer.mean().unweighted(), geometry: geometry, scale: 30}) .get('nd'); // Observe the difference between weighted and unweighted reductions. print('weighted:', weighted); print('unweighted', unweighted);
import ee import geemap.core as geemap
Colab (Python)
# Load a Landsat 8 input image. image = ee.Image('LANDSAT/LC08/C02/T1/LC08_044034_20140318') # Create an arbitrary region. geometry = ee.Geometry.Rectangle(-122.496, 37.532, -121.554, 37.538) # Make an NDWI image. It will have one band named 'nd'. ndwi = image.normalizedDifference(['B3', 'B5']) # Compute the weighted mean of the NDWI image clipped to the region. weighted = ( ndwi.clip(geometry) .reduceRegion(reducer=ee.Reducer.mean(), geometry=geometry, scale=30) .get('nd') ) # Compute the UN-weighted mean of the NDWI image clipped to the region. unweighted = ( ndwi.clip(geometry) .reduceRegion( reducer=ee.Reducer.mean().unweighted(), geometry=geometry, scale=30 ) .get('nd') ) # Observe the difference between weighted and unweighted reductions. display('weighted:', weighted) display('unweighted', unweighted)
ความแตกต่างของผลลัพธ์เกิดจากพิกเซลที่ขอบของภูมิภาคได้รับน้ำหนักเป็น 1 อันเป็นผลมาจากการเรียกใช้ unweighted()
ในรีดิวเซอร์
หากต้องการเอาต์พุตที่มีน้ำหนักอย่างชัดเจน คุณควรตั้งค่าน้ำหนักอย่างชัดเจนด้วย splitWeights()
ที่เรียกใช้ตัวลด ตัวลดที่แก้ไขโดย
splitWeights()
จะรับอินพุต 2 รายการ โดยอินพุตที่ 2 คือน้ำหนัก ตัวอย่างต่อไปนี้แสดง splitWeights()
โดยการคำนวณค่าเฉลี่ยถ่วงน้ำหนักของดัชนีความแตกต่างของพืช (NDVI) ที่ปรับมาตรฐานแล้ว (NDVI) ในพื้นที่ โดยมีน้ำหนักตามคะแนนเมฆ (ยิ่งมีเมฆมาก น้ำหนักก็ยิ่งต่ำ)
เครื่องมือแก้ไขโค้ด (JavaScript)
// Load an input Landsat 8 image. var image = ee.Image('LANDSAT/LC08/C02/T1_TOA/LC08_186059_20130419'); // Compute cloud score and reverse it such that the highest // weight (100) is for the least cloudy pixels. var cloudWeight = ee.Image(100).subtract( ee.Algorithms.Landsat.simpleCloudScore(image).select(['cloud'])); // Compute NDVI and add the cloud weight band. var ndvi = image.normalizedDifference(['B5', 'B4']).addBands(cloudWeight); // Define an arbitrary region in a cloudy area. var region = ee.Geometry.Rectangle(9.9069, 0.5981, 10.5, 0.9757); // Use a mean reducer. var reducer = ee.Reducer.mean(); // Compute the unweighted mean. var unweighted = ndvi.select(['nd']).reduceRegion(reducer, region, 30); // compute mean weighted by cloudiness. var weighted = ndvi.reduceRegion(reducer.splitWeights(), region, 30); // Observe the difference as a result of weighting by cloudiness. print('unweighted:', unweighted); print('weighted:', weighted);
import ee import geemap.core as geemap
Colab (Python)
# Load an input Landsat 8 image. image = ee.Image('LANDSAT/LC08/C02/T1_TOA/LC08_186059_20130419') # Compute cloud score and reverse it such that the highest # weight (100) is for the least cloudy pixels. cloud_weight = ee.Image(100).subtract( ee.Algorithms.Landsat.simpleCloudScore(image).select(['cloud']) ) # Compute NDVI and add the cloud weight band. ndvi = image.normalizedDifference(['B5', 'B4']).addBands(cloud_weight) # Define an arbitrary region in a cloudy area. region = ee.Geometry.Rectangle(9.9069, 0.5981, 10.5, 0.9757) # Use a mean reducer. reducer = ee.Reducer.mean() # Compute the unweighted mean. unweighted = ndvi.select(['nd']).reduceRegion(reducer, region, 30) # compute mean weighted by cloudiness. weighted = ndvi.reduceRegion(reducer.splitWeights(), region, 30) # Observe the difference as a result of weighting by cloudiness. display('unweighted:', unweighted) display('weighted:', weighted)
โปรดทราบว่าต้องเพิ่ม cloudWeight
เป็นวงก่อนเรียกใช้ reduceRegion()
ผลลัพธ์แสดงให้เห็นว่า NDVI เฉลี่ยโดยประมาณสูงขึ้นเนื่องจากการลดน้ำหนักของพิกเซลที่มีเมฆ