加權折扣

根據預設,套用至圖像的縮減器會根據遮罩值為輸入內容加權。這與透過 clip() 等運算所建立的部分像素相關。在 reducer 上呼叫 unweighted(),即可調整這項行為。使用無權重的縮減器會強制將區域中的所有像素設為相同權重。以下範例說明像素權重如何影響縮減器輸出內容:

程式碼編輯器 (JavaScript)

// Load a Landsat 8 input image.
var image = ee.Image('LANDSAT/LC08/C02/T1/LC08_044034_20140318');

// Create an arbitrary region.
var geometry = ee.Geometry.Rectangle(-122.496, 37.532, -121.554, 37.538);

// Make an NDWI image.  It will have one band named 'nd'.
var ndwi = image.normalizedDifference(['B3', 'B5']);

// Compute the weighted mean of the NDWI image clipped to the region.
var weighted = ndwi.clip(geometry)
  .reduceRegion({
    reducer: ee.Reducer.mean(),
    geometry: geometry,
    scale: 30})
  .get('nd');

// Compute the UN-weighted mean of the NDWI image clipped to the region.
var unweighted = ndwi.clip(geometry)
  .reduceRegion({
    reducer: ee.Reducer.mean().unweighted(),
    geometry: geometry,
    scale: 30})
  .get('nd');

// Observe the difference between weighted and unweighted reductions.
print('weighted:', weighted);
print('unweighted', unweighted);

Python 設定

請參閱「 Python 環境」頁面,瞭解 Python API 和如何使用 geemap 進行互動式開發。

import ee
import geemap.core as geemap

Colab (Python)

# Load a Landsat 8 input image.
image = ee.Image('LANDSAT/LC08/C02/T1/LC08_044034_20140318')

# Create an arbitrary region.
geometry = ee.Geometry.Rectangle(-122.496, 37.532, -121.554, 37.538)

# Make an NDWI image.  It will have one band named 'nd'.
ndwi = image.normalizedDifference(['B3', 'B5'])

# Compute the weighted mean of the NDWI image clipped to the region.
weighted = (
    ndwi.clip(geometry)
    .reduceRegion(reducer=ee.Reducer.mean(), geometry=geometry, scale=30)
    .get('nd')
)

# Compute the UN-weighted mean of the NDWI image clipped to the region.
unweighted = (
    ndwi.clip(geometry)
    .reduceRegion(
        reducer=ee.Reducer.mean().unweighted(), geometry=geometry, scale=30
    )
    .get('nd')
)

# Observe the difference between weighted and unweighted reductions.
display('weighted:', weighted)
display('unweighted', unweighted)

結果的差異是因為區域邊緣的像素在調節器上呼叫 unweighted() 後,會收到 1 的權重。

為了取得明確加權的輸出內容,建議您在 Reducer 上呼叫 splitWeights(),明確設定權重。經 splitWeights() 修改的 reducer 會接收兩個輸入值,其中第二個輸入值是權重。以下範例說明 splitWeights(),透過計算區域內的常態化差異植被指數 (NDVI) 加權平均值,並以雲量分數提供權重 (雲量越多,權重越低):

程式碼編輯器 (JavaScript)

// Load an input Landsat 8 image.
var image = ee.Image('LANDSAT/LC08/C02/T1_TOA/LC08_186059_20130419');

// Compute cloud score and reverse it such that the highest
// weight (100) is for the least cloudy pixels.
var cloudWeight = ee.Image(100).subtract(
  ee.Algorithms.Landsat.simpleCloudScore(image).select(['cloud']));

// Compute NDVI and add the cloud weight band.
var ndvi = image.normalizedDifference(['B5', 'B4']).addBands(cloudWeight);

// Define an arbitrary region in a cloudy area.
var region = ee.Geometry.Rectangle(9.9069, 0.5981, 10.5, 0.9757);

// Use a mean reducer.
var reducer = ee.Reducer.mean();

// Compute the unweighted mean.
var unweighted = ndvi.select(['nd']).reduceRegion(reducer, region, 30);

// compute mean weighted by cloudiness.
var weighted = ndvi.reduceRegion(reducer.splitWeights(), region, 30);

// Observe the difference as a result of weighting by cloudiness.
print('unweighted:', unweighted);
print('weighted:', weighted);

Python 設定

請參閱「 Python 環境」頁面,瞭解 Python API 和如何使用 geemap 進行互動式開發。

import ee
import geemap.core as geemap

Colab (Python)

# Load an input Landsat 8 image.
image = ee.Image('LANDSAT/LC08/C02/T1_TOA/LC08_186059_20130419')

# Compute cloud score and reverse it such that the highest
# weight (100) is for the least cloudy pixels.
cloud_weight = ee.Image(100).subtract(
    ee.Algorithms.Landsat.simpleCloudScore(image).select(['cloud'])
)

# Compute NDVI and add the cloud weight band.
ndvi = image.normalizedDifference(['B5', 'B4']).addBands(cloud_weight)

# Define an arbitrary region in a cloudy area.
region = ee.Geometry.Rectangle(9.9069, 0.5981, 10.5, 0.9757)

# Use a mean reducer.
reducer = ee.Reducer.mean()

# Compute the unweighted mean.
unweighted = ndvi.select(['nd']).reduceRegion(reducer, region, 30)

# compute mean weighted by cloudiness.
weighted = ndvi.reduceRegion(reducer.splitWeights(), region, 30)

# Observe the difference as a result of weighting by cloudiness.
display('unweighted:', unweighted)
display('weighted:', weighted)

請注意,您必須先將 cloudWeight 新增為頻帶,才能呼叫 reduceRegion()。結果顯示,由於雲遮率像素的權重降低,預估的 NDVI 平均值會提高。