ee.data.getPixels (Python only)
Mit Sammlungen den Überblick behalten
Sie können Inhalte basierend auf Ihren Einstellungen speichern und kategorisieren.
Ruft Pixel aus einem Bild-Asset ab.
Gibt zurück:
Die Pixel als Rohbilddaten.
Nutzung | Ausgabe |
ee.data.getPixels(params) | Objekt|Wert |
Argument | Typ | Details |
params | Objekt | Ein Objekt mit Parametern mit den folgenden möglichen Werten:
assetId : Die Asset-ID, für die Pixel abgerufen werden sollen. Muss ein Bild-Asset sein.
fileFormat : Das resultierende Dateiformat. Die Standardeinstellung ist „png“. Informationen zu den verfügbaren Formaten finden Sie unter ImageFileFormat. Es gibt zusätzliche Formate, mit denen das heruntergeladene Objekt in ein Python-Datenobjekt konvertiert wird. Dazu gehören:
NUMPY_NDARRAY , das in ein strukturiertes NumPy-Array konvertiert wird.
grid : Parameter, die das Pixelraster beschreiben, in dem Daten abgerufen werden sollen.
Standardmäßig wird das native Pixelraster der Daten verwendet.
region : Wenn vorhanden, die Region der zurückzugebenden Daten, angegeben als GeoJSON-Geometrieobjekt (siehe RFC 7946).
bandIds : Wenn vorhanden, wird ein bestimmter Satz von Bändern angegeben, aus denen Pixel abgerufen werden sollen.
visualizationOptions : Falls vorhanden, eine Reihe von Visualisierungsoptionen, die angewendet werden sollen, um eine 8‑Bit-RGB-Visualisierung der Daten zu erstellen, anstatt die Rohdaten zurückzugeben. |
Beispiele
Python einrichten
Informationen zur Python API und zur Verwendung von geemap
für die interaktive Entwicklung finden Sie auf der Seite
Python-Umgebung.
import ee
import geemap.core as geemap
Colab (Python)
# Region of interest.
coords = [
-121.58626826832939,
38.059141484827485,
]
region = ee.Geometry.Point(coords)
# Get a Sentinel-2 image.
image = (ee.ImageCollection('COPERNICUS/S2')
.filterBounds(region)
.filterDate('2020-04-01', '2020-09-01')
.sort('CLOUD_COVERAGE_ASSESSMENT')
.first())
image_id = image.getInfo()['id']
# Make a projection to discover the scale in degrees.
proj = ee.Projection('EPSG:4326').atScale(10).getInfo()
# Get scales out of the transform.
scale_x = proj['transform'][0]
scale_y = -proj['transform'][4]
# Make a request object.
request = {
'assetId': image_id,
'fileFormat': 'PNG',
'bandIds': ['B4', 'B3', 'B2'],
'grid': {
'dimensions': {
'width': 640,
'height': 640
},
'affineTransform': {
'scaleX': scale_x,
'shearX': 0,
'translateX': coords[0],
'shearY': 0,
'scaleY': scale_y,
'translateY': coords[1]
},
'crsCode': proj['crs'],
},
'visualizationOptions': {'ranges': [{'min': 0, 'max': 3000}]},
}
image_png = ee.data.getPixels(request)
# Do something with the image...
Sofern nicht anders angegeben, sind die Inhalte dieser Seite unter der Creative Commons Attribution 4.0 License und Codebeispiele unter der Apache 2.0 License lizenziert. Weitere Informationen finden Sie in den Websiterichtlinien von Google Developers. Java ist eine eingetragene Marke von Oracle und/oder seinen Partnern.
Zuletzt aktualisiert: 2025-07-26 (UTC).
[null,null,["Zuletzt aktualisiert: 2025-07-26 (UTC)."],[[["\u003cp\u003e\u003ccode\u003eee.data.getPixels\u003c/code\u003e fetches raw image data or visualized 8-bit RGB data from an Earth Engine image asset.\u003c/p\u003e\n"],["\u003cp\u003eThe function requires specifying the asset ID and allows customization of file format, pixel grid, region, bands, and visualization options.\u003c/p\u003e\n"],["\u003cp\u003eUsers can define the output region, select specific bands for extraction, and apply visualization parameters for an RGB representation.\u003c/p\u003e\n"],["\u003cp\u003ePython examples demonstrate the usage of \u003ccode\u003eee.data.getPixels\u003c/code\u003e with the necessary parameters and retrieving image data.\u003c/p\u003e\n"]]],[],null,["# ee.data.getPixels (Python only)\n\n\u003cbr /\u003e\n\nFetches pixels from an image asset.\n\n\u003cbr /\u003e\n\nReturns:\nThe pixels as raw image data.\n\n| Usage | Returns |\n|-----------------------------|---------------|\n| `ee.data.getPixels(params)` | Object\\|Value |\n\n| Argument | Type | Details |\n|----------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `params` | Object | An object containing parameters with the following possible values: `assetId` - The asset ID for which to get pixels. Must be an image asset. `fileFormat` - The resulting file format. Defaults to png. See [ImageFileFormat](https://developers.google.com/earth-engine/reference/rest/v1/ImageFileFormat) for the available formats. There are additional formats that convert the downloaded object to a Python data object. These include: `NUMPY_NDARRAY`, which converts to a structured NumPy array. `grid` - Parameters describing the pixel grid in which to fetch data. Defaults to the native pixel grid of the data. `region` - If present, the region of data to return, specified as a GeoJSON geometry object (see RFC 7946). `bandIds` - If present, specifies a specific set of bands from which to get pixels. `visualizationOptions` - If present, a set of visualization options to apply to produce an 8-bit RGB visualization of the data, rather than returning the raw data. |\n\nExamples\n--------\n\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Region of interest.\ncoords = [\n -121.58626826832939,\n 38.059141484827485,\n]\nregion = ee.Geometry.Point(coords)\n\n# Get a Sentinel-2 image.\nimage = (ee.ImageCollection('COPERNICUS/S2')\n .filterBounds(region)\n .filterDate('2020-04-01', '2020-09-01')\n .sort('CLOUD_COVERAGE_ASSESSMENT')\n .first())\nimage_id = image.getInfo()['id']\n\n# Make a projection to discover the scale in degrees.\nproj = ee.Projection('EPSG:4326').atScale(10).getInfo()\n\n# Get scales out of the transform.\nscale_x = proj['transform'][0]\nscale_y = -proj['transform'][4]\n\n# Make a request object.\nrequest = {\n 'assetId': image_id,\n 'fileFormat': 'PNG',\n 'bandIds': ['B4', 'B3', 'B2'],\n 'grid': {\n 'dimensions': {\n 'width': 640,\n 'height': 640\n },\n 'affineTransform': {\n 'scaleX': scale_x,\n 'shearX': 0,\n 'translateX': coords[0],\n 'shearY': 0,\n 'scaleY': scale_y,\n 'translateY': coords[1]\n },\n 'crsCode': proj['crs'],\n },\n 'visualizationOptions': {'ranges': [{'min': 0, 'max': 3000}]},\n}\n\nimage_png = ee.data.getPixels(request)\n# Do something with the image...\n```"]]