Tableaux et images de tableaux

Les tableaux dans Earth Engine sont construits à partir de listes de nombres et de listes de listes. Le degré d'imbrication détermine le nombre de dimensions. Pour commencer avec un exemple simple et motivé, considérez l'exemple suivant d'un Array créé à partir des coefficients de la coiffe à rabat (TC) de Landsat 8 (Baig et al., 2014):

Éditeur de code (JavaScript)

// Create an Array of Tasseled Cap coefficients.
var coefficients = ee.Array([
  [0.3029, 0.2786, 0.4733, 0.5599, 0.508, 0.1872],
  [-0.2941, -0.243, -0.5424, 0.7276, 0.0713, -0.1608],
  [0.1511, 0.1973, 0.3283, 0.3407, -0.7117, -0.4559],
  [-0.8239, 0.0849, 0.4396, -0.058, 0.2013, -0.2773],
  [-0.3294, 0.0557, 0.1056, 0.1855, -0.4349, 0.8085],
  [0.1079, -0.9023, 0.4119, 0.0575, -0.0259, 0.0252],
]);

Configuration de Python

Consultez la page Environnement Python pour en savoir plus sur l'API Python et l'utilisation de geemap pour le développement interactif.

import ee
import geemap.core as geemap

Colab (Python)

# Create an Array of Tasseled Cap coefficients.
coefficients = ee.Array([
    [0.3029, 0.2786, 0.4733, 0.5599, 0.508, 0.1872],
    [-0.2941, -0.243, -0.5424, 0.7276, 0.0713, -0.1608],
    [0.1511, 0.1973, 0.3283, 0.3407, -0.7117, -0.4559],
    [-0.8239, 0.0849, 0.4396, -0.058, 0.2013, -0.2773],
    [-0.3294, 0.0557, 0.1056, 0.1855, -0.4349, 0.8085],
    [0.1079, -0.9023, 0.4119, 0.0575, -0.0259, 0.0252],
])

Vérifiez qu'il s'agit d'une matrice 2D de 6 x 6 à l'aide de length(), qui renvoie les longueurs de chaque axe:

Éditeur de code (JavaScript)

// Print the dimensions.
print(coefficients.length()); //    [6,6]

Configuration de Python

Consultez la page Environnement Python pour en savoir plus sur l'API Python et l'utilisation de geemap pour le développement interactif.

import ee
import geemap.core as geemap

Colab (Python)

# Print the dimensions.
display(coefficients.length())  #    [6,6]

Le tableau suivant illustre la disposition des entrées de la matrice le long des axes 0 et 1:

Axe 1 ->
012345
00,30290,27860,47330,55990,5080,1872
1-0,2941-0,243-0,54240,72760,0713-0,1608
Axe 020,15110,19730,32830,3407-0,7117-0,4559
3-0,82390,08490,4396-0,0580,2013-0,2773
4-0,32940,05570,10560,1855-0,43490,8085
50,1079-0,90230,41190,0575-0,02590,0252

Les indices situés à gauche du tableau indiquent les positions sur l'axe 0. L'élément n de chaque liste sur l'axe 0 se trouve à la position n sur l'axe 1. Par exemple, l'entrée à la coordonnée [3,1] du tableau est 0,0849. Supposons que "vertu" soit le composant TC qui nous intéresse. Vous pouvez obtenir la sous-matrice de verdure à l'aide de slice():

Éditeur de code (JavaScript)

// Get the 1x6 greenness slice, display it.
var greenness = coefficients.slice({axis: 0, start: 1, end: 2, step: 1});
print(greenness);

Configuration de Python

Consultez la page Environnement Python pour en savoir plus sur l'API Python et l'utilisation de geemap pour le développement interactif.

import ee
import geemap.core as geemap

Colab (Python)

# Get the 1x6 greenness slice, display it.
greenness = coefficients.slice(axis=0, start=1, end=2, step=1)
display(greenness)

La matrice de verdure 2D devrait se présenter comme suit:

[[-0.2941,-0.243,-0.5424,0.7276,0.0713,-0.1608]]
    

Notez que les paramètres start et end de slice() correspondent aux indices de l'axe 0 affichés dans le tableau (start est inclusif et end est exclusif).

Images de tableau

Pour obtenir une image de verdure, multipliez les bandes d'une image Landsat 8 par la matrice de verdure. Pour ce faire, commencez par convertir l'image Landsat multibande en "image matricielle", où chaque pixel est un Array de valeurs de bande. Exemple :

Éditeur de code (JavaScript)

// Load a Landsat 8 image, select the bands of interest.
var image = ee.Image('LANDSAT/LC08/C02/T1_TOA/LC08_044034_20140318')
  .select(['B2', 'B3', 'B4', 'B5', 'B6', 'B7']);

// Make an Array Image, with a 1-D Array per pixel.
var arrayImage1D = image.toArray();

// Make an Array Image with a 2-D Array per pixel, 6x1.
var arrayImage2D = arrayImage1D.toArray(1);

Configuration de Python

Consultez la page Environnement Python pour en savoir plus sur l'API Python et l'utilisation de geemap pour le développement interactif.

import ee
import geemap.core as geemap

Colab (Python)

# Load a Landsat 8 image, select the bands of interest.
image = ee.Image('LANDSAT/LC08/C02/T1_TOA/LC08_044034_20140318').select(
    ['B2', 'B3', 'B4', 'B5', 'B6', 'B7']
)

# Make an Array Image, with a 1-D Array per pixel.
array_image_1d = image.toArray()

# Make an Array Image with a 2-D Array per pixel, 6x1.
array_image_2d = array_image_1d.toArray(1)

Dans cet exemple, notez que toArray() convertit image en image matricielle dans laquelle chaque pixel est un vecteur à dimension 1, dont les entrées correspondent aux six valeurs aux positions correspondantes dans les bandes de image. Une image de tableau de vecteurs 1D créée de cette manière n'a aucun concept de forme 2D. Pour effectuer des opérations uniquement en deux dimensions, telles que la multiplication de matrices, convertissez-la en image par pixel dans un tableau à deux dimensions avec toArray(1). Dans chaque pixel de l'image du tableau 2D, il existe une matrice 6x1 de valeurs de bande. Pour le voir, prenons l'exemple suivant:

Éditeur de code (JavaScript)

var array1D = ee.Array([1, 2, 3]);              // [1,2,3]
var array2D = ee.Array.cat([array1D], 1);     // [[1],[2],[3]]

Configuration de Python

Consultez la page Environnement Python pour en savoir plus sur l'API Python et l'utilisation de geemap pour le développement interactif.

import ee
import geemap.core as geemap

Colab (Python)

array_1d = ee.Array([1, 2, 3])  # [1,2,3]
array_2d = ee.Array.cat([array_1d], 1)  # [[1],[2],[3]]

Notez que le vecteur array1D varie le long de l'axe 0. La matrice array2D fonctionne également, mais elle comporte une dimension supplémentaire. Appeler toArray(1) sur l'image du tableau revient à appeler cat(bandVector, 1) sur chaque pixel. À l'aide de l'image du tableau 2D, effectuez une multiplication à gauche par une image dans laquelle chaque pixel contient une matrice 2D de coefficients de verdure:

Éditeur de code (JavaScript)

// Do a matrix multiplication: 1x6 times 6x1.
// Cast the greenness Array to an Image prior to multiplication.
var greennessArrayImage = ee.Image(greenness).matrixMultiply(arrayImage2D);

Configuration de Python

Consultez la page Environnement Python pour en savoir plus sur l'API Python et l'utilisation de geemap pour le développement interactif.

import ee
import geemap.core as geemap

Colab (Python)

# Do a matrix multiplication: 1x6 times 6x1.
# Cast the greenness Array to an Image prior to multiplication.
greenness_array_image = ee.Image(greenness).matrixMultiply(array_image_2d)

Le résultat est une nouvelle image de tableau où chaque pixel est la matrice 1x1 résultant de la multiplication de la matrice 1x6 de la couleur verte (à gauche) et de la matrice de bande 6x1 (à droite). À des fins d'affichage, convertissez-la en image à bande unique avec arrayGet():

Éditeur de code (JavaScript)

// Get the result from the 1x1 array in each pixel of the 2-D array image.
var greennessImage = greennessArrayImage.arrayGet([0, 0]);

// Display the input imagery with the greenness result.
Map.setCenter(-122.3, 37.562, 10);
Map.addLayer(image, {bands: ['B5', 'B4', 'B3'], min: 0, max: 0.5}, 'image');
Map.addLayer(greennessImage, {min: -0.1, max: 0.13}, 'greenness');

Configuration de Python

Consultez la page Environnement Python pour en savoir plus sur l'API Python et l'utilisation de geemap pour le développement interactif.

import ee
import geemap.core as geemap

Colab (Python)

# Get the result from the 1x1 array in each pixel of the 2-D array image.
greenness_image = greenness_array_image.arrayGet([0, 0])

# Display the input imagery with the greenness result.
m = geemap.Map()
m.set_center(-122.3, 37.562, 10)
m.add_layer(image, {'bands': ['B5', 'B4', 'B3'], 'min': 0, 'max': 0.5}, 'image')
m.add_layer(greenness_image, {'min': -0.1, 'max': 0.13}, 'greenness')
m

Voici un exemple complet, qui utilise l'ensemble complet des coefficients pour calculer plusieurs composants de chapeau à pompon en même temps et afficher le résultat:

Éditeur de code (JavaScript)

// Define an Array of Tasseled Cap coefficients.
var coefficients = ee.Array([
  [0.3029, 0.2786, 0.4733, 0.5599, 0.508, 0.1872],
  [-0.2941, -0.243, -0.5424, 0.7276, 0.0713, -0.1608],
  [0.1511, 0.1973, 0.3283, 0.3407, -0.7117, -0.4559],
  [-0.8239, 0.0849, 0.4396, -0.058, 0.2013, -0.2773],
  [-0.3294, 0.0557, 0.1056, 0.1855, -0.4349, 0.8085],
  [0.1079, -0.9023, 0.4119, 0.0575, -0.0259, 0.0252],
]);

// Load a Landsat 8 image, select the bands of interest.
var image = ee.Image('LANDSAT/LC08/C02/T1_TOA/LC08_044034_20140318')
  .select(['B2', 'B3', 'B4', 'B5', 'B6', 'B7']);

// Make an Array Image, with a 1-D Array per pixel.
var arrayImage1D = image.toArray();

// Make an Array Image with a 2-D Array per pixel, 6x1.
var arrayImage2D = arrayImage1D.toArray(1);

// Do a matrix multiplication: 6x6 times 6x1.
var componentsImage = ee.Image(coefficients)
  .matrixMultiply(arrayImage2D)
  // Get rid of the extra dimensions.
  .arrayProject([0])
  .arrayFlatten(
    [['brightness', 'greenness', 'wetness', 'fourth', 'fifth', 'sixth']]);

// Display the first three bands of the result and the input imagery.
var vizParams = {
  bands: ['brightness', 'greenness', 'wetness'],
  min: -0.1, max: [0.5, 0.1, 0.1]
};
Map.setCenter(-122.3, 37.562, 10);
Map.addLayer(image, {bands: ['B5', 'B4', 'B3'], min: 0, max: 0.5}, 'image');
Map.addLayer(componentsImage, vizParams, 'components');

Configuration de Python

Consultez la page Environnement Python pour en savoir plus sur l'API Python et l'utilisation de geemap pour le développement interactif.

import ee
import geemap.core as geemap

Colab (Python)

# Define an Array of Tasseled Cap coefficients.
coefficients = ee.Array([
    [0.3029, 0.2786, 0.4733, 0.5599, 0.508, 0.1872],
    [-0.2941, -0.243, -0.5424, 0.7276, 0.0713, -0.1608],
    [0.1511, 0.1973, 0.3283, 0.3407, -0.7117, -0.4559],
    [-0.8239, 0.0849, 0.4396, -0.058, 0.2013, -0.2773],
    [-0.3294, 0.0557, 0.1056, 0.1855, -0.4349, 0.8085],
    [0.1079, -0.9023, 0.4119, 0.0575, -0.0259, 0.0252],
])

# Load a Landsat 8 image, select the bands of interest.
image = ee.Image('LANDSAT/LC08/C02/T1_TOA/LC08_044034_20140318').select(
    ['B2', 'B3', 'B4', 'B5', 'B6', 'B7']
)

# Make an Array Image, with a 1-D Array per pixel.
array_image_1d = image.toArray()

# Make an Array Image with a 2-D Array per pixel, 6x1.
array_image_2d = array_image_1d.toArray(1)

# Do a matrix multiplication: 6x6 times 6x1.
components_image = (
    ee.Image(coefficients)
    .matrixMultiply(array_image_2d)
    # Get rid of the extra dimensions.
    .arrayProject([0])
    .arrayFlatten(
        [['brightness', 'greenness', 'wetness', 'fourth', 'fifth', 'sixth']]
    )
)

# Display the first three bands of the result and the input imagery.
viz_params = {
    'bands': ['brightness', 'greenness', 'wetness'],
    'min': -0.1,
    'max': [0.5, 0.1, 0.1],
}
m = geemap.Map()
m.set_center(-122.3, 37.562, 10)
m.add_layer(image, {'bands': ['B5', 'B4', 'B3'], 'min': 0, 'max': 0.5}, 'image')
m.add_layer(components_image, viz_params, 'components')
m

Notez que lorsque vous obtenez des bandes à partir d'une image de tableau, commencez par supprimer les dimensions supplémentaires avec project(), puis convertissez-la à nouveau en image standard avec arrayFlatten(). Le résultat devrait ressembler à ceci:

image de la casquette à pompon
Figure 1. Composants de la casquette à pompon : "luminosité" (rouge), "vertu" (vert) et "humidité" (bleu).