Tri et réduction des tableaux

Le tri de tableaux est utile pour obtenir des mosaïques de qualité personnalisées, qui impliquent de réduire un sous-ensemble de bandes d'images en fonction des valeurs d'une autre bande. L'exemple suivant trie par NDVI, puis obtient la moyenne d'un sous-ensemble d'observations de la collection présentant les valeurs NDVI les plus élevées:

Éditeur de code (JavaScript)

// Define a function that scales and masks Landsat 8 surface reflectance images
// and adds an NDVI band.
function prepSrL8(image) {
  // Develop masks for unwanted pixels (fill, cloud, cloud shadow).
  var qaMask = image.select('QA_PIXEL').bitwiseAnd(parseInt('11111', 2)).eq(0);
  var saturationMask = image.select('QA_RADSAT').eq(0);

  // Apply the scaling factors to the appropriate bands.
  var opticalBands = image.select('SR_B.').multiply(0.0000275).add(-0.2);
  var thermalBands = image.select('ST_B.*').multiply(0.00341802).add(149.0);

  // Calculate NDVI.
  var ndvi = opticalBands.normalizedDifference(['SR_B5', 'SR_B4'])
      .rename('NDVI');

  // Replace original bands with scaled bands, add NDVI band, and apply masks.
  return image.addBands(opticalBands, null, true)
      .addBands(thermalBands, null, true)
      .addBands(ndvi)
      .updateMask(qaMask)
      .updateMask(saturationMask);
}

// Define an arbitrary region of interest as a point.
var roi = ee.Geometry.Point(-122.26032, 37.87187);

// Load a Landsat 8 surface reflectance collection.
var collection = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')
  // Filter to get only imagery at a point of interest.
  .filterBounds(roi)
  // Filter to get only six months of data.
  .filterDate('2021-01-01', '2021-07-01')
  // Prepare images by mapping the prepSrL8 function over the collection.
  .map(prepSrL8)
  // Select the bands of interest to avoid taking up unneeded memory.
  .select('SR_B.|NDVI');

// Convert the collection to an array.
var array = collection.toArray();

// Label of the axes.
var imageAxis = 0;
var bandAxis = 1;

// Get the NDVI slice and the bands of interest.
var bandNames = collection.first().bandNames();
var bands = array.arraySlice(bandAxis, 0, bandNames.length());
var ndvi = array.arraySlice(bandAxis, -1);

// Sort by descending NDVI.
var sorted = bands.arraySort(ndvi.multiply(-1));

// Get the highest 20% NDVI observations per pixel.
var numImages = sorted.arrayLength(imageAxis).multiply(0.2).int();
var highestNdvi = sorted.arraySlice(imageAxis, 0, numImages);

// Get the mean of the highest 20% NDVI observations by reducing
// along the image axis.
var mean = highestNdvi.arrayReduce({
  reducer: ee.Reducer.mean(),
  axes: [imageAxis]
});

// Turn the reduced array image into a multi-band image for display.
var meanImage = mean.arrayProject([bandAxis]).arrayFlatten([bandNames]);
Map.centerObject(roi, 12);
Map.addLayer(meanImage, {bands: ['SR_B6', 'SR_B5', 'SR_B4'], min: 0, max: 0.4});

Configuration de Python

Consultez la page Environnement Python pour en savoir plus sur l'API Python et l'utilisation de geemap pour le développement interactif.

import ee
import geemap.core as geemap

Colab (Python)

# Define a function that scales and masks Landsat 8 surface reflectance images
# and adds an NDVI band.
def prep_sr_l8(image):
  # Develop masks for unwanted pixels (fill, cloud, cloud shadow).
  qa_mask = image.select('QA_PIXEL').bitwiseAnd(int('11111', 2)).eq(0)
  saturation_mask = image.select('QA_RADSAT').eq(0)

  # Apply the scaling factors to the appropriate bands.
  optical_bands = image.select('SR_B.').multiply(0.0000275).add(-0.2)
  thermal_bands = image.select('ST_B.*').multiply(0.00341802).add(149.0)

  # Calculate NDVI.
  ndvi = optical_bands.normalizedDifference(['SR_B5', 'SR_B4']).rename('NDVI')

  # Replace the original bands with the scaled ones and apply the masks.
  return (
      image.addBands(optical_bands, None, True)
      .addBands(thermal_bands, None, True)
      .addBands(ndvi)
      .updateMask(qa_mask)
      .updateMask(saturation_mask)
  )


# Define an arbitrary region of interest as a point.
roi = ee.Geometry.Point(-122.26032, 37.87187)

# Load a Landsat 8 surface reflectance collection.
collection = (
    ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')
    # Filter to get only imagery at a point of interest.
    .filterBounds(roi)
    # Filter to get only six months of data.
    .filterDate('2021-01-01', '2021-07-01')
    # Prepare images by mapping the prep_sr_l8 function over the collection.
    .map(prep_sr_l8)
    # Select the bands of interest to avoid taking up unneeded memory.
    .select('SR_B.|NDVI')
)

# Convert the collection to an array.
array = collection.toArray()

# Label of the axes.
image_axis = 0
band_axis = 1

# Get the NDVI slice and the bands of interest.
band_names = collection.first().bandNames()
bands = array.arraySlice(band_axis, 0, band_names.length())
ndvi = array.arraySlice(band_axis, -1)

# Sort by descending NDVI.
sorted = bands.arraySort(ndvi.multiply(-1))

# Get the highest 20% NDVI observations per pixel.
num_images = sorted.arrayLength(image_axis).multiply(0.2).int()
highest_ndvi = sorted.arraySlice(image_axis, 0, num_images)

# Get the mean of the highest 20% NDVI observations by reducing
# along the image axis.
mean = highest_ndvi.arrayReduce(reducer=ee.Reducer.mean(), axes=[image_axis])

# Turn the reduced array image into a multi-band image for display.
mean_image = mean.arrayProject([band_axis]).arrayFlatten([band_names])
m = geemap.Map()
m.center_object(roi, 12)
m.add_layer(
    mean_image, {'bands': ['SR_B6', 'SR_B5', 'SR_B4'], 'min': 0, 'max': 0.4}
)
m

Comme dans l'exemple de modélisation linéaire, séparez les bandes d'intérêt de l'indice de tri (NDVI) à l'aide de arraySlice() le long de l'axe des bandes. Triez ensuite les bandes d'intérêt par indice de tri à l'aide de arraySort(). Une fois que les pixels ont été triés par NDVI décroissant, utilisez arraySlice() le long de imageAxis pour obtenir 20% des pixels NDVI les plus élevés. Enfin, appliquez arrayReduce() le long de imageAxis avec un réducteur de moyenne pour obtenir la moyenne des pixels NDVI les plus élevés. La dernière étape consiste à convertir l'image du tableau en image multibande pour l'afficher.