إشعار: يجب
إثبات أهلية جميع المشاريع غير التجارية المسجّلة لاستخدام Earth Engine قبل
15 أبريل 2025 من أجل الحفاظ على إمكانية الوصول إلى Earth Engine.
التصنيف غير المُوجّه (التجميع)
تنظيم صفحاتك في مجموعات
يمكنك حفظ المحتوى وتصنيفه حسب إعداداتك المفضّلة.
تعالج حزمة ee.Clusterer
التصنيف غير الخاضع للإشراف (أو
التجميع) في Earth Engine. تستند هذه الخوارزميات حاليًا إلى
الخوارزميات التي تحمل الاسم نفسه في Weka.
تتوفّر مزيد من التفاصيل حول كل Clusterer
في
المستندات المرجعية.
يتم استخدام أدوات التجميع بالطريقة نفسها التي يتم بها استخدام أدوات التصنيف في Earth Engine. في ما يلي الخطوات العامة
التي يجب اتّباعها لإجراء التجميع:
- تجميع العناصر التي تحتوي على خصائص رقمية للعثور على المجموعات
- أنشئ مثيلًا لفئة "المجموعات". اضبط مَعلماته إذا لزم الأمر.
- تدريب أداة تجميع البيانات باستخدام بيانات التدريب
- طبِّق أداة التجميع على صورة أو مجموعة عناصر.
- أدخِل تصنيفات للمجموعات.
بيانات التدريب هي FeatureCollection
تتضمّن سمات سيتم
إدخالها إلى أداة التجميع. على عكس المصنّفات، لا تتوفّر قيمة فئة إدخال لمحاولة
Clusterer
. مثل المصنّفات، من المتوقع أن تحتوي بيانات خطوتَي التدريب والتطبيق
على العدد نفسه من القيم. عند تطبيق أداة تجميع مدرَّبة على صورة
أو جدول، يتم تخصيص رقم تعريف مجموعة صحيح لكل بكسل أو ميزة.
في ما يلي مثال بسيط على إنشاء ee.Clusterer
واستخدامه:
محرِّر الرموز البرمجية (JavaScript)
// Define a region in which to generate a segmented map.
var region = ee.Geometry.Rectangle(29.7, 30, 32.5, 31.7);
// Load a Landsat composite for input.
var input = ee.ImageCollection('LANDSAT/COMPOSITES/C02/T1_L2_32DAY')
.filterDate('2001-05', '2001-06')
.first()
.clip(region);
// Display the sample region.
Map.setCenter(31.5, 31.0, 8);
Map.addLayer(ee.Image().paint(region, 0, 2), {}, 'region');
// Make the training dataset.
var training = input.sample({
region: region,
scale: 30,
numPixels: 5000
});
// Instantiate the clusterer and train it.
var clusterer = ee.Clusterer.wekaKMeans(15).train(training);
// Cluster the input using the trained clusterer.
var result = input.cluster(clusterer);
// Display the clusters with random colors.
Map.addLayer(result.randomVisualizer(), {}, 'clusters');
إعداد لغة Python
اطّلِع على صفحة
بيئة Python للحصول على معلومات عن واجهة برمجة التطبيقات Python API واستخدام IDE
geemap
لتطوير التطبيقات التفاعلي.
import ee
import geemap.core as geemap
Colab (Python)
# Define a region in which to generate a segmented map.
region = ee.Geometry.Rectangle(29.7, 30, 32.5, 31.7)
# Load a Landsat composite for input.
input = (
ee.ImageCollection('LANDSAT/COMPOSITES/C02/T1_L2_32DAY')
.filterDate('2001-05', '2001-06')
.first()
.clip(region)
)
# Display the sample region.
m = geemap.Map()
m.set_center(31.5, 31.0, 8)
m.add_layer(ee.Image().paint(region, 0, 2), {}, 'region')
# Make the training dataset.
training = input.sample(region=region, scale=30, numPixels=5000)
# Instantiate the clusterer and train it.
clusterer = ee.Clusterer.wekaKMeans(15).train(training)
# Cluster the input using the trained clusterer.
result = input.cluster(clusterer)
# Display the clusters with random colors.
m.add_layer(result.randomVisualizer(), {}, 'clusters')
m
ملاحظة:
- من المفترض أن تؤدي المدخلات نفسها إلى النتائج نفسها في كلّ مرّة، ولكن يمكن أن يؤدي إعادة ترتيب المدخلات إلى
تغيير النتائج.
- يمكن أن يؤدي التدريب باستخدام 10 نطاقات * 100 ألف نقطة إلى ظهور خطأ "نفاد الذاكرة".
- قد يستغرق إكمال شبكة العنكبوت وقتًا طويلاً ويمكن أن ينتج عنها عدد كبير من المجموعات.
- تعتمد المجموعات الناتجة ومستندات التعريف الخاصة بها على الخوارزمية والمدخلات.
إنّ محتوى هذه الصفحة مرخّص بموجب ترخيص Creative Commons Attribution 4.0 ما لم يُنصّ على خلاف ذلك، ونماذج الرموز مرخّصة بموجب ترخيص Apache 2.0. للاطّلاع على التفاصيل، يُرجى مراجعة سياسات موقع Google Developers. إنّ Java هي علامة تجارية مسجَّلة لشركة Oracle و/أو شركائها التابعين.
تاريخ التعديل الأخير: 2025-07-25 (حسب التوقيت العالمي المتفَّق عليه)
[null,null,["تاريخ التعديل الأخير: 2025-07-25 (حسب التوقيت العالمي المتفَّق عليه)"],[[["\u003cp\u003eThe \u003ccode\u003eee.Clusterer\u003c/code\u003e package in Earth Engine enables unsupervised classification (clustering) using algorithms from Weka.\u003c/p\u003e\n"],["\u003cp\u003eThe clustering workflow involves assembling features, instantiating and training a clusterer, applying it to data, and labeling the resulting clusters.\u003c/p\u003e\n"],["\u003cp\u003eTraining data for clustering is a \u003ccode\u003eFeatureCollection\u003c/code\u003e with numeric properties, and the output assigns integer cluster IDs to pixels or features.\u003c/p\u003e\n"],["\u003cp\u003eCluster results can vary based on input order and the specific algorithm used, and large datasets may lead to memory errors.\u003c/p\u003e\n"],["\u003cp\u003eEarth Engine provides various clustering algorithms, each with its own characteristics and potential limitations, such as Cobweb's runtime and cluster count.\u003c/p\u003e\n"]]],["`ee.Clusterer` in Earth Engine performs unsupervised classification. The process involves assembling features, instantiating a clusterer (like `wekaKMeans`), and training it with a `FeatureCollection`. The trained clusterer is then applied to an image or feature collection, assigning an integer cluster ID to each element. The provided example loads Landsat data, samples it for training, and applies a trained clusterer to visualize the resulting clusters. The number of features in the dataset can impact the performance and stability of the clusterer.\n"],null,["# Unsupervised Classification (clustering)\n\nThe `ee.Clusterer` package handles unsupervised classification (or\n*clustering* ) in Earth Engine. These algorithms are currently based on the\nalgorithms with the same name in [Weka](http://www.cs.waikato.ac.nz/ml/weka/).\nMore details about each `Clusterer` are available in the\n[reference docs](/earth-engine/apidocs).\n\nClusterers are used in the same manner as classifiers in Earth Engine. The general\nworkflow for clustering is:\n\n1. Assemble features with numeric properties in which to find clusters.\n2. Instantiate a clusterer. Set its parameters if necessary.\n3. Train the clusterer using the training data.\n4. Apply the clusterer to an image or feature collection.\n5. Label the clusters.\n\nThe training data is a `FeatureCollection` with properties that will be\ninput to the clusterer. Unlike classifiers, there is no input class value for an\n`Clusterer`. Like classifiers, the data for the train and apply steps are\nexpected to have the same number of values. When a trained clusterer is applied to an image\nor table, it assigns an integer cluster ID to each pixel or feature.\n\nHere is a simple example of building and using an `ee.Clusterer`:\n\n### Code Editor (JavaScript)\n\n```javascript\n// Define a region in which to generate a segmented map.\nvar region = ee.Geometry.Rectangle(29.7, 30, 32.5, 31.7);\n\n// Load a Landsat composite for input.\nvar input = ee.ImageCollection('LANDSAT/COMPOSITES/C02/T1_L2_32DAY')\n .filterDate('2001-05', '2001-06')\n .first()\n .clip(region);\n\n// Display the sample region.\nMap.setCenter(31.5, 31.0, 8);\nMap.addLayer(ee.Image().paint(region, 0, 2), {}, 'region');\n\n// Make the training dataset.\nvar training = input.sample({\n region: region,\n scale: 30,\n numPixels: 5000\n});\n\n// Instantiate the clusterer and train it.\nvar clusterer = ee.Clusterer.wekaKMeans(15).train(training);\n\n// Cluster the input using the trained clusterer.\nvar result = input.cluster(clusterer);\n\n// Display the clusters with random colors.\nMap.addLayer(result.randomVisualizer(), {}, 'clusters');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Define a region in which to generate a segmented map.\nregion = ee.Geometry.Rectangle(29.7, 30, 32.5, 31.7)\n\n# Load a Landsat composite for input.\ninput = (\n ee.ImageCollection('LANDSAT/COMPOSITES/C02/T1_L2_32DAY')\n .filterDate('2001-05', '2001-06')\n .first()\n .clip(region)\n)\n\n# Display the sample region.\nm = geemap.Map()\nm.set_center(31.5, 31.0, 8)\nm.add_layer(ee.Image().paint(region, 0, 2), {}, 'region')\n\n# Make the training dataset.\ntraining = input.sample(region=region, scale=30, numPixels=5000)\n\n# Instantiate the clusterer and train it.\nclusterer = ee.Clusterer.wekaKMeans(15).train(training)\n\n# Cluster the input using the trained clusterer.\nresult = input.cluster(clusterer)\n\n# Display the clusters with random colors.\nm.add_layer(result.randomVisualizer(), {}, 'clusters')\nm\n```\n\nPlease note:\n\n- The same inputs should always produce the same outputs, but reordering the inputs can change the results.\n- Training with as few as 10 bands \\* 100k points can produce an Out Of Memory error.\n- Cobweb can take a long time to finish and can produce a large number of clusters.\n- The output clusters and their IDs are dependent on the algorithm and inputs."]]