التجميع والفسيفساء

يشير التركيب بشكل عام إلى عملية دمج الصور المتداخلة مكانيًا في صورة واحدة استنادًا إلى وظيفة تجميع. يشير مصطلح "التجميع" إلى عملية تجميع مجموعات بيانات الصور في مساحات جغرافية معيّنة لإنشاء صورة مستمرة في مساحات جغرافية معيّنة. في Earth Engine، يتم استخدام هذين المصطلحين بالتبادل، على الرغم من توفّر كلّ من ميزة "التركيب" وميزة "التجميع". على سبيل المثال، ننصحك بالتفكير في مهمة دمج صور متعددة في الموقع الجغرافي نفسه. على سبيل المثال، باستخدام أحد مجموعات "برنامج الصور الزراعية الوطنية" (NAIP) "الكوارتران الرقمي للصور الجوية" (DOQQ) في أوقات مختلفة، يوضّح المثال التالي كيفية إنشاء مركب للقيمة القصوى:

محرِّر الرموز البرمجية (JavaScript)

// Load three NAIP quarter quads in the same location, different times.
var naip2004_2012 = ee.ImageCollection('USDA/NAIP/DOQQ')
  .filterBounds(ee.Geometry.Point(-71.08841, 42.39823))
  .filterDate('2004-07-01', '2012-12-31')
  .select(['R', 'G', 'B']);

// Temporally composite the images with a maximum value function.
var composite = naip2004_2012.max();
Map.setCenter(-71.12532, 42.3712, 12);
Map.addLayer(composite, {}, 'max value composite');

إعداد لغة Python

اطّلِع على صفحة بيئة Python للحصول على معلومات عن واجهة برمجة التطبيقات Python API واستخدام IDE geemap لتطوير التطبيقات التفاعلي.

import ee
import geemap.core as geemap

Colab (Python)

# Load three NAIP quarter quads in the same location, different times.
naip_2004_2012 = (
    ee.ImageCollection('USDA/NAIP/DOQQ')
    .filterBounds(ee.Geometry.Point(-71.08841, 42.39823))
    .filterDate('2004-07-01', '2012-12-31')
    .select(['R', 'G', 'B'])
)

# Temporally composite the images with a maximum value function.
composite = naip_2004_2012.max()
m.set_center(-71.12532, 42.3712, 12)
m.add_layer(composite, {}, 'max value composite')
m

لنفترض أنّك بحاجة إلى إنشاء فسيفساء من أربعة عروض مختلفة لبيانات طلبات البحث على خرائط Google في الوقت نفسه، ولكن في مواقع جغرافية مختلفة. يوضّح المثال التالي ذلك باستخدام imageCollection.mosaic():

محرِّر الرموز البرمجية (JavaScript)

// Load four 2012 NAIP quarter quads, different locations.
var naip2012 = ee.ImageCollection('USDA/NAIP/DOQQ')
  .filterBounds(ee.Geometry.Rectangle(-71.17965, 42.35125, -71.08824, 42.40584))
  .filterDate('2012-01-01', '2012-12-31');

// Spatially mosaic the images in the collection and display.
var mosaic = naip2012.mosaic();
Map.setCenter(-71.12532, 42.3712, 12);
Map.addLayer(mosaic, {}, 'spatial mosaic');

إعداد لغة Python

اطّلِع على صفحة بيئة Python للحصول على معلومات عن واجهة برمجة التطبيقات Python API واستخدام IDE geemap لتطوير التطبيقات التفاعلي.

import ee
import geemap.core as geemap

Colab (Python)

# Load four 2012 NAIP quarter quads, different locations.
naip_2012 = (
    ee.ImageCollection('USDA/NAIP/DOQQ')
    .filterBounds(
        ee.Geometry.Rectangle(-71.17965, 42.35125, -71.08824, 42.40584)
    )
    .filterDate('2012-01-01', '2012-12-31')
)

# Spatially mosaic the images in the collection and display.
mosaic = naip_2012.mosaic()
m = geemap.Map()
m.set_center(-71.12532, 42.3712, 12)
m.add_layer(mosaic, {}, 'spatial mosaic')

يُرجى العِلم أنّ هناك بعض التداخل في طلبات البحث ذات النتائج الوصفية في المثال السابق. تجمع طريقة mosaic() الصور المتداخلة معًا وفقًا لترتيبها في المجموعة (الصورة الأخيرة في الأعلى). للتحكّم في مصدر البكسل في mosaic (أو الصورة المركبة)، استخدِم أقنعة الصور. على سبيل المثال، يستخدم الإجراء التالي حدودًا في المؤشرات الطيفية لإخفاء بيانات الصورة في لوحة فسيفساء:

محرِّر الرموز البرمجية (JavaScript)

// Load a NAIP quarter quad, display.
var naip = ee.Image('USDA/NAIP/DOQQ/m_4207148_nw_19_1_20120710');
Map.setCenter(-71.0915, 42.3443, 14);
Map.addLayer(naip, {}, 'NAIP DOQQ');

// Create the NDVI and NDWI spectral indices.
var ndvi = naip.normalizedDifference(['N', 'R']);
var ndwi = naip.normalizedDifference(['G', 'N']);

// Create some binary images from thresholds on the indices.
// This threshold is designed to detect bare land.
var bare1 = ndvi.lt(0.2).and(ndwi.lt(0.3));
// This detects bare land with lower sensitivity. It also detects shadows.
var bare2 = ndvi.lt(0.2).and(ndwi.lt(0.8));

// Define visualization parameters for the spectral indices.
var ndviViz = {min: -1, max: 1, palette: ['FF0000', '00FF00']};
var ndwiViz = {min: 0.5, max: 1, palette: ['00FFFF', '0000FF']};

// Mask and mosaic visualization images.  The last layer is on top.
var mosaic = ee.ImageCollection([
  // NDWI > 0.5 is water.  Visualize it with a blue palette.
  ndwi.updateMask(ndwi.gte(0.5)).visualize(ndwiViz),
  // NDVI > 0.2 is vegetation.  Visualize it with a green palette.
  ndvi.updateMask(ndvi.gte(0.2)).visualize(ndviViz),
  // Visualize bare areas with shadow (bare2 but not bare1) as gray.
  bare2.updateMask(bare2.and(bare1.not())).visualize({palette: ['AAAAAA']}),
  // Visualize the other bare areas as white.
  bare1.updateMask(bare1).visualize({palette: ['FFFFFF']}),
]).mosaic();
Map.addLayer(mosaic, {}, 'Visualization mosaic');

إعداد لغة Python

اطّلِع على صفحة بيئة Python للحصول على معلومات عن واجهة برمجة التطبيقات Python API واستخدام IDE geemap لتطوير التطبيقات التفاعلي.

import ee
import geemap.core as geemap

Colab (Python)

# Load a NAIP quarter quad, display.
naip = ee.Image('USDA/NAIP/DOQQ/m_4207148_nw_19_1_20120710')
m = geemap.Map()
m.set_center(-71.0915, 42.3443, 14)
m.add_layer(naip, {}, 'NAIP DOQQ')

# Create the NDVI and NDWI spectral indices.
ndvi = naip.normalizedDifference(['N', 'R'])
ndwi = naip.normalizedDifference(['G', 'N'])

# Create some binary images from thresholds on the indices.
# This threshold is designed to detect bare land.
bare_1 = ndvi.lt(0.2).And(ndwi.lt(0.3))
# This detects bare land with lower sensitivity. It also detects shadows.
bare_2 = ndvi.lt(0.2).And(ndwi.lt(0.8))

# Mask and mosaic visualization images. The last layer is on top.
mosaic = ee.ImageCollection([
    # NDWI > 0.5 is water. Visualize it with a blue palette.
    ndwi.updateMask(ndwi.gte(0.5)).visualize(
        min=0.5, max=1, palette=['00FFFF', '0000FF']
    ),
    # NDVI > 0.2 is vegetation. Visualize it with a green palette.
    ndvi.updateMask(ndvi.gte(0.2)).visualize(
        min=-1, max=1, palette=['FF0000', '00FF00']
    ),
    # Visualize bare areas with shadow (bare_2 but not bare_1) as gray.
    bare_2.updateMask(bare_2.And(bare_1.Not())).visualize(palette=['AAAAAA']),
    # Visualize the other bare areas as white.
    bare_1.updateMask(bare_1).visualize(palette=['FFFFFF']),
]).mosaic()
m.add_layer(mosaic, {}, 'Visualization mosaic')
m

لإنشاء مركب يحدّد نطاقًا عشوائيًا في الإدخال إلى أقصى حد، استخدِم imageCollection.qualityMosaic(). تُحدِّد طريقة qualityMosaic() كل بكسل في الصورة المركبة استنادًا إلى الصورة في المجموعة التي تحتوي على الحد الأقصى لقيمة النطاق المحدّد. على سبيل المثال، توضّح التعليمة البرمجية التالية كيفية إنشاء مركّب من أخضرّ البكسل ومركّب من أحدث قيمة:

محرِّر الرموز البرمجية (JavaScript)

// Define a function that scales and masks Landsat 8 surface reflectance images.
function prepSrL8(image) {
  // Develop masks for unwanted pixels (fill, cloud, cloud shadow).
  var qaMask = image.select('QA_PIXEL').bitwiseAnd(parseInt('11111', 2)).eq(0);
  var saturationMask = image.select('QA_RADSAT').eq(0);

  // Apply the scaling factors to the appropriate bands.
  var getFactorImg = function(factorNames) {
    var factorList = image.toDictionary().select(factorNames).values();
    return ee.Image.constant(factorList);
  };
  var scaleImg = getFactorImg([
    'REFLECTANCE_MULT_BAND_.|TEMPERATURE_MULT_BAND_ST_B10']);
  var offsetImg = getFactorImg([
    'REFLECTANCE_ADD_BAND_.|TEMPERATURE_ADD_BAND_ST_B10']);
  var scaled = image.select('SR_B.|ST_B10').multiply(scaleImg).add(offsetImg);

  // Replace original bands with scaled bands and apply masks.
  return image.addBands(scaled, null, true)
    .updateMask(qaMask).updateMask(saturationMask);
}

// This function masks clouds and adds quality bands to Landsat 8 images.
var addQualityBands = function(image) {
  // Normalized difference vegetation index.
  var ndvi = image.normalizedDifference(['SR_B5', 'SR_B4']);
  // Image timestamp as milliseconds since Unix epoch.
  var millis = ee.Image(image.getNumber('system:time_start'))
                   .rename('millis').toFloat();
  return prepSrL8(image).addBands([ndvi, millis]);
};

// Load a 2014 Landsat 8 ImageCollection.
// Map the cloud masking and quality band function over the collection.
var collection = ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')
  .filterDate('2014-06-01', '2014-12-31')
  .map(addQualityBands);

// Create a cloud-free, most recent value composite.
var recentValueComposite = collection.qualityMosaic('millis');

// Create a greenest pixel composite.
var greenestPixelComposite = collection.qualityMosaic('nd');

// Display the results.
Map.setCenter(-122.374, 37.8239, 12); // San Francisco Bay
var vizParams = {bands: ['SR_B5', 'SR_B4', 'SR_B3'], min: 0, max: 0.4};
Map.addLayer(recentValueComposite, vizParams, 'Recent value composite');
Map.addLayer(greenestPixelComposite, vizParams, 'Greenest pixel composite');

// Compare to a cloudy image in the collection.
var cloudy = ee.Image('LANDSAT/LC08/C02/T1_TOA/LC08_044034_20140825');
Map.addLayer(cloudy, {bands: ['B5', 'B4', 'B3'], min: 0, max: 0.4}, 'Cloudy');

إعداد لغة Python

اطّلِع على صفحة بيئة Python للحصول على معلومات عن واجهة برمجة التطبيقات Python API واستخدام IDE geemap لتطوير التطبيقات التفاعلي.

import ee
import geemap.core as geemap

Colab (Python)

# Define a function that scales and masks Landsat 8 surface reflectance images.
def prep_sr_l8(image):
  # Develop masks for unwanted pixels (fill, cloud, cloud shadow).
  qa_mask = image.select('QA_PIXEL').bitwiseAnd(int('11111', 2)).eq(0)
  saturation_mask = image.select('QA_RADSAT').eq(0)

  # Helper function to create image from scaling factors.
  def get_factor_img(factor_names):
    factor_list = image.toDictionary().select(factor_names).values()
    return ee.Image.constant(factor_list)

  # Apply the scaling factors to the appropriate bands.
  scale_img = get_factor_img(
      ['REFLECTANCE_MULT_BAND_.|TEMPERATURE_MULT_BAND_ST_B10']
  )
  offset_img = get_factor_img(
      ['REFLECTANCE_ADD_BAND_.|TEMPERATURE_ADD_BAND_ST_B10']
  )
  scaled = image.select('SR_B.|ST_B10').multiply(scale_img).add(offset_img)

  # Replace original bands with scaled bands and apply masks.
  return (
      image.addBands(scaled, None, True)
      .updateMask(qa_mask)
      .updateMask(saturation_mask)
  )


# This function masks clouds and adds quality bands to Landsat 8 images.
def add_quality_bands(image):
  # Normalized difference vegetation index.
  ndvi = image.normalizedDifference(['SR_B5', 'SR_B4'])
  # Image timestamp as milliseconds since Unix epoch.
  millis = (
      ee.Image(image.getNumber('system:time_start')).rename('millis').toFloat()
  )
  return prep_sr_l8(image).addBands([ndvi, millis])


# Load a 2014 Landsat 8 ImageCollection.
# Map the cloud masking and quality band function over the collection.
collection = (
    ee.ImageCollection('LANDSAT/LC08/C02/T1_L2')
    .filterDate('2014-06-01', '2014-12-31')
    .map(add_quality_bands)
)

# Create a cloud-free, most recent value composite.
recent_value_composite = collection.qualityMosaic('millis')

# Create a greenest pixel composite.
greenest_pixel_composite = collection.qualityMosaic('nd')

# Display the results.
m = geemap.Map()
m.set_center(-122.374, 37.8239, 12)  # San Francisco Bay
viz_params = {'bands': ['SR_B5', 'SR_B4', 'SR_B3'], 'min': 0, 'max': 0.4}
m.add_layer(recent_value_composite, viz_params, 'Recent value composite')
m.add_layer(greenest_pixel_composite, viz_params, 'Greenest pixel composite')

# Compare to a cloudy image in the collection.
cloudy = ee.Image('LANDSAT/LC08/C02/T1_TOA/LC08_044034_20140825')
m.add_layer(
    cloudy, {'bands': ['B5', 'B4', 'B3'], 'min': 0, 'max': 0.4}, 'Cloudy'
)
m

استخدِم أداة الفحص للتحقّق من قيم وحدات البكسل في مواضع مختلفة من الصور المركبة. يُرجى ملاحظة أنّ نطاق millis (الطابع الزمني) يختلف حسب الموقع الجغرافي، ما يشير إلى أنّ الوحدات البكسل المختلفة تأتي من أوقات مختلفة.