Eine ImageCollection filtern
Mit Sammlungen den Überblick behalten
Sie können Inhalte basierend auf Ihren Einstellungen speichern und kategorisieren.
Wie im Abschnitt „Einstieg“ und im Abschnitt „Informationen zur Bildsammlung“ gezeigt, bietet Earth Engine eine Vielzahl von praktischen Methoden zum Filtern von Bildsammlungen.
Insbesondere werden viele gängige Anwendungsfälle von imageCollection.filterDate()
und imageCollection.filterBounds()
abgedeckt. Für allgemeine Filter verwenden Sie imageCollection.filter()
mit einem ee.Filter
als Argument. Im folgenden Beispiel werden sowohl praktische Methoden als auch filter()
gezeigt, um Bilder mit hoher Wolkenbedeckung aus einem ImageCollection
zu identifizieren und zu entfernen.
Code-Editor (JavaScript)
// Load Landsat 8 data, filter by date, month, and bounds.
var collection = ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')
.filterDate('2015-01-01', '2018-01-01') // Three years of data
.filter(ee.Filter.calendarRange(11, 2, 'month')) // Only Nov-Feb observations
.filterBounds(ee.Geometry.Point(25.8544, -18.08874)); // Intersecting ROI
// Also filter the collection by the CLOUD_COVER property.
var filtered = collection.filter(ee.Filter.eq('CLOUD_COVER', 0));
// Create two composites to check the effect of filtering by CLOUD_COVER.
var badComposite = collection.mean();
var goodComposite = filtered.mean();
// Display the composites.
Map.setCenter(25.8544, -18.08874, 13);
Map.addLayer(badComposite,
{bands: ['B3', 'B2', 'B1'], min: 0.05, max: 0.35, gamma: 1.1},
'Bad composite');
Map.addLayer(goodComposite,
{bands: ['B3', 'B2', 'B1'], min: 0.05, max: 0.35, gamma: 1.1},
'Good composite');
Python einrichten
Auf der Seite
Python-Umgebung finden Sie Informationen zur Python API und zur Verwendung von geemap
für die interaktive Entwicklung.
import ee
import geemap.core as geemap
Colab (Python)
# Load Landsat 8 data, filter by date, month, and bounds.
collection = (
ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')
# Three years of data
.filterDate('2015-01-01', '2018-01-01')
# Only Nov-Feb observations
.filter(ee.Filter.calendarRange(11, 2, 'month'))
# Intersecting ROI
.filterBounds(ee.Geometry.Point(25.8544, -18.08874))
)
# Also filter the collection by the CLOUD_COVER property.
filtered = collection.filter(ee.Filter.eq('CLOUD_COVER', 0))
# Create two composites to check the effect of filtering by CLOUD_COVER.
bad_composite = collection.mean()
good_composite = filtered.mean()
# Display the composites.
m = geemap.Map()
m.set_center(25.8544, -18.08874, 13)
m.add_layer(
bad_composite,
{'bands': ['B3', 'B2', 'B1'], 'min': 0.05, 'max': 0.35, 'gamma': 1.1},
'Bad composite',
)
m.add_layer(
good_composite,
{'bands': ['B3', 'B2', 'B1'], 'min': 0.05, 'max': 0.35, 'gamma': 1.1},
'Good composite',
)
m
Sofern nicht anders angegeben, sind die Inhalte dieser Seite unter der Creative Commons Attribution 4.0 License und Codebeispiele unter der Apache 2.0 License lizenziert. Weitere Informationen finden Sie in den Websiterichtlinien von Google Developers. Java ist eine eingetragene Marke von Oracle und/oder seinen Partnern.
Zuletzt aktualisiert: 2025-07-25 (UTC).
[null,null,["Zuletzt aktualisiert: 2025-07-25 (UTC)."],[[["\u003cp\u003eEarth Engine provides multiple methods for filtering image collections, including convenience functions like \u003ccode\u003efilterDate()\u003c/code\u003e and \u003ccode\u003efilterBounds()\u003c/code\u003e as well as the more general \u003ccode\u003efilter()\u003c/code\u003e method for custom filtering needs.\u003c/p\u003e\n"],["\u003cp\u003eThis example demonstrates how to filter a Landsat 8 image collection by date, month, geographic bounds, and cloud cover using these methods.\u003c/p\u003e\n"],["\u003cp\u003eFiltering by cloud cover significantly improves the quality of composites derived from image collections, as shown by comparing a composite generated from unfiltered data with one generated from data filtered for zero cloud cover.\u003c/p\u003e\n"],["\u003cp\u003eThe code example is provided in both JavaScript and Python, enabling users to apply these filtering techniques in their preferred programming environment within the Earth Engine platform.\u003c/p\u003e\n"]]],["The content demonstrates filtering image collections in Earth Engine. It uses `filterDate()`, `filterBounds()`, and `filter()` to refine a Landsat 8 dataset. The data is filtered by date (2015-2018), month (November-February), and a specific location. Further filtering removes images with high cloud cover using `CLOUD_COVER`. Two composites, one filtered for low cloud cover and one unfiltered, are then created and displayed to illustrate the effect of filtering.\n"],null,["# Filtering an ImageCollection\n\nAs illustrated in the [Get Started section](/earth-engine/guides/getstarted)\nand the [ImageCollection Information section](/earth-engine/guides/ic_info), Earth\nEngine provides a variety of convenience methods for filtering image collections.\nSpecifically, many common use cases are handled by `imageCollection.filterDate()`,\nand `imageCollection.filterBounds()`. For general purpose filtering, use\n`imageCollection.filter()` with an `ee.Filter` as an argument. The\nfollowing example demonstrates both convenience methods and `filter()`\nto identify and remove images with high cloud cover from an `ImageCollection`.\n\n### Code Editor (JavaScript)\n\n```javascript\n// Load Landsat 8 data, filter by date, month, and bounds.\nvar collection = ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')\n .filterDate('2015-01-01', '2018-01-01') // Three years of data\n .filter(ee.Filter.calendarRange(11, 2, 'month')) // Only Nov-Feb observations\n .filterBounds(ee.Geometry.Point(25.8544, -18.08874)); // Intersecting ROI\n\n// Also filter the collection by the CLOUD_COVER property.\nvar filtered = collection.filter(ee.Filter.eq('CLOUD_COVER', 0));\n\n// Create two composites to check the effect of filtering by CLOUD_COVER.\nvar badComposite = collection.mean();\nvar goodComposite = filtered.mean();\n\n// Display the composites.\nMap.setCenter(25.8544, -18.08874, 13);\nMap.addLayer(badComposite,\n {bands: ['B3', 'B2', 'B1'], min: 0.05, max: 0.35, gamma: 1.1},\n 'Bad composite');\nMap.addLayer(goodComposite,\n {bands: ['B3', 'B2', 'B1'], min: 0.05, max: 0.35, gamma: 1.1},\n 'Good composite');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Load Landsat 8 data, filter by date, month, and bounds.\ncollection = (\n ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')\n # Three years of data\n .filterDate('2015-01-01', '2018-01-01')\n # Only Nov-Feb observations\n .filter(ee.Filter.calendarRange(11, 2, 'month'))\n # Intersecting ROI\n .filterBounds(ee.Geometry.Point(25.8544, -18.08874))\n)\n\n# Also filter the collection by the CLOUD_COVER property.\nfiltered = collection.filter(ee.Filter.eq('CLOUD_COVER', 0))\n\n# Create two composites to check the effect of filtering by CLOUD_COVER.\nbad_composite = collection.mean()\ngood_composite = filtered.mean()\n\n# Display the composites.\nm = geemap.Map()\nm.set_center(25.8544, -18.08874, 13)\nm.add_layer(\n bad_composite,\n {'bands': ['B3', 'B2', 'B1'], 'min': 0.05, 'max': 0.35, 'gamma': 1.1},\n 'Bad composite',\n)\nm.add_layer(\n good_composite,\n {'bands': ['B3', 'B2', 'B1'], 'min': 0.05, 'max': 0.35, 'gamma': 1.1},\n 'Good composite',\n)\nm\n```"]]