Eine ImageCollection filtern

Wie im Abschnitt „Einstieg“ und im Abschnitt „Informationen zur Bildsammlung“ gezeigt, bietet Earth Engine eine Vielzahl von praktischen Methoden zum Filtern von Bildsammlungen. Insbesondere werden viele gängige Anwendungsfälle von imageCollection.filterDate() und imageCollection.filterBounds() abgedeckt. Für allgemeine Filter verwenden Sie imageCollection.filter() mit einem ee.Filter als Argument. Im folgenden Beispiel werden sowohl praktische Methoden als auch filter() gezeigt, um Bilder mit hoher Wolkenbedeckung aus einem ImageCollection zu identifizieren und zu entfernen.

Code-Editor (JavaScript)

// Load Landsat 8 data, filter by date, month, and bounds.
var collection = ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')
  .filterDate('2015-01-01', '2018-01-01')  // Three years of data
  .filter(ee.Filter.calendarRange(11, 2, 'month'))  // Only Nov-Feb observations
  .filterBounds(ee.Geometry.Point(25.8544, -18.08874));  // Intersecting ROI

// Also filter the collection by the CLOUD_COVER property.
var filtered = collection.filter(ee.Filter.eq('CLOUD_COVER', 0));

// Create two composites to check the effect of filtering by CLOUD_COVER.
var badComposite = collection.mean();
var goodComposite = filtered.mean();

// Display the composites.
Map.setCenter(25.8544, -18.08874, 13);
Map.addLayer(badComposite,
             {bands: ['B3', 'B2', 'B1'], min: 0.05, max: 0.35, gamma: 1.1},
             'Bad composite');
Map.addLayer(goodComposite,
             {bands: ['B3', 'B2', 'B1'], min: 0.05, max: 0.35, gamma: 1.1},
             'Good composite');

Python einrichten

Auf der Seite Python-Umgebung finden Sie Informationen zur Python API und zur Verwendung von geemap für die interaktive Entwicklung.

import ee
import geemap.core as geemap

Colab (Python)

# Load Landsat 8 data, filter by date, month, and bounds.
collection = (
    ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')
    # Three years of data
    .filterDate('2015-01-01', '2018-01-01')
    # Only Nov-Feb observations
    .filter(ee.Filter.calendarRange(11, 2, 'month'))
    # Intersecting ROI
    .filterBounds(ee.Geometry.Point(25.8544, -18.08874))
)

# Also filter the collection by the CLOUD_COVER property.
filtered = collection.filter(ee.Filter.eq('CLOUD_COVER', 0))

# Create two composites to check the effect of filtering by CLOUD_COVER.
bad_composite = collection.mean()
good_composite = filtered.mean()

# Display the composites.
m = geemap.Map()
m.set_center(25.8544, -18.08874, 13)
m.add_layer(
    bad_composite,
    {'bands': ['B3', 'B2', 'B1'], 'min': 0.05, 'max': 0.35, 'gamma': 1.1},
    'Bad composite',
)
m.add_layer(
    good_composite,
    {'bands': ['B3', 'B2', 'B1'], 'min': 0.05, 'max': 0.35, 'gamma': 1.1},
    'Good composite',
)
m