סינון של ImageCollection
קל לארגן דפים בעזרת אוספים
אפשר לשמור ולסווג תוכן על סמך ההעדפות שלך.
כפי שמתואר בקטע 'תחילת העבודה' ובקטע 'מידע על ImageCollection', ב-Earth Engine יש מגוון שיטות נוחות לסינון של אוספי תמונות.
באופן ספציפי, imageCollection.filterDate()
ו-imageCollection.filterBounds()
מטפלים בתרחישים נפוצים רבים לדוגמה. לסינון למטרות כלליות, משתמשים ב-imageCollection.filter()
עם ee.Filter
כארגומנט. בדוגמה הבאה מוצגות גם שיטות נוחות וגם filter()
כדי לזהות ולהסיר תמונות עם כיסוי עננים גבוה מ-ImageCollection
.
Code Editor (JavaScript)
// Load Landsat 8 data, filter by date, month, and bounds.
var collection = ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')
.filterDate('2015-01-01', '2018-01-01') // Three years of data
.filter(ee.Filter.calendarRange(11, 2, 'month')) // Only Nov-Feb observations
.filterBounds(ee.Geometry.Point(25.8544, -18.08874)); // Intersecting ROI
// Also filter the collection by the CLOUD_COVER property.
var filtered = collection.filter(ee.Filter.eq('CLOUD_COVER', 0));
// Create two composites to check the effect of filtering by CLOUD_COVER.
var badComposite = collection.mean();
var goodComposite = filtered.mean();
// Display the composites.
Map.setCenter(25.8544, -18.08874, 13);
Map.addLayer(badComposite,
{bands: ['B3', 'B2', 'B1'], min: 0.05, max: 0.35, gamma: 1.1},
'Bad composite');
Map.addLayer(goodComposite,
{bands: ['B3', 'B2', 'B1'], min: 0.05, max: 0.35, gamma: 1.1},
'Good composite');
הגדרת Python
בדף
סביבת Python מפורט מידע על Python API ועל השימוש ב-geemap
לפיתוח אינטראקטיבי.
import ee
import geemap.core as geemap
Colab (Python)
# Load Landsat 8 data, filter by date, month, and bounds.
collection = (
ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')
# Three years of data
.filterDate('2015-01-01', '2018-01-01')
# Only Nov-Feb observations
.filter(ee.Filter.calendarRange(11, 2, 'month'))
# Intersecting ROI
.filterBounds(ee.Geometry.Point(25.8544, -18.08874))
)
# Also filter the collection by the CLOUD_COVER property.
filtered = collection.filter(ee.Filter.eq('CLOUD_COVER', 0))
# Create two composites to check the effect of filtering by CLOUD_COVER.
bad_composite = collection.mean()
good_composite = filtered.mean()
# Display the composites.
m = geemap.Map()
m.set_center(25.8544, -18.08874, 13)
m.add_layer(
bad_composite,
{'bands': ['B3', 'B2', 'B1'], 'min': 0.05, 'max': 0.35, 'gamma': 1.1},
'Bad composite',
)
m.add_layer(
good_composite,
{'bands': ['B3', 'B2', 'B1'], 'min': 0.05, 'max': 0.35, 'gamma': 1.1},
'Good composite',
)
m
אלא אם צוין אחרת, התוכן של דף זה הוא ברישיון Creative Commons Attribution 4.0 ודוגמאות הקוד הן ברישיון Apache 2.0. לפרטים, ניתן לעיין במדיניות האתר Google Developers. Java הוא סימן מסחרי רשום של חברת Oracle ו/או של השותפים העצמאיים שלה.
עדכון אחרון: 2025-07-25 (שעון UTC).
[null,null,["עדכון אחרון: 2025-07-25 (שעון UTC)."],[[["\u003cp\u003eEarth Engine provides multiple methods for filtering image collections, including convenience functions like \u003ccode\u003efilterDate()\u003c/code\u003e and \u003ccode\u003efilterBounds()\u003c/code\u003e as well as the more general \u003ccode\u003efilter()\u003c/code\u003e method for custom filtering needs.\u003c/p\u003e\n"],["\u003cp\u003eThis example demonstrates how to filter a Landsat 8 image collection by date, month, geographic bounds, and cloud cover using these methods.\u003c/p\u003e\n"],["\u003cp\u003eFiltering by cloud cover significantly improves the quality of composites derived from image collections, as shown by comparing a composite generated from unfiltered data with one generated from data filtered for zero cloud cover.\u003c/p\u003e\n"],["\u003cp\u003eThe code example is provided in both JavaScript and Python, enabling users to apply these filtering techniques in their preferred programming environment within the Earth Engine platform.\u003c/p\u003e\n"]]],["The content demonstrates filtering image collections in Earth Engine. It uses `filterDate()`, `filterBounds()`, and `filter()` to refine a Landsat 8 dataset. The data is filtered by date (2015-2018), month (November-February), and a specific location. Further filtering removes images with high cloud cover using `CLOUD_COVER`. Two composites, one filtered for low cloud cover and one unfiltered, are then created and displayed to illustrate the effect of filtering.\n"],null,["# Filtering an ImageCollection\n\nAs illustrated in the [Get Started section](/earth-engine/guides/getstarted)\nand the [ImageCollection Information section](/earth-engine/guides/ic_info), Earth\nEngine provides a variety of convenience methods for filtering image collections.\nSpecifically, many common use cases are handled by `imageCollection.filterDate()`,\nand `imageCollection.filterBounds()`. For general purpose filtering, use\n`imageCollection.filter()` with an `ee.Filter` as an argument. The\nfollowing example demonstrates both convenience methods and `filter()`\nto identify and remove images with high cloud cover from an `ImageCollection`.\n\n### Code Editor (JavaScript)\n\n```javascript\n// Load Landsat 8 data, filter by date, month, and bounds.\nvar collection = ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')\n .filterDate('2015-01-01', '2018-01-01') // Three years of data\n .filter(ee.Filter.calendarRange(11, 2, 'month')) // Only Nov-Feb observations\n .filterBounds(ee.Geometry.Point(25.8544, -18.08874)); // Intersecting ROI\n\n// Also filter the collection by the CLOUD_COVER property.\nvar filtered = collection.filter(ee.Filter.eq('CLOUD_COVER', 0));\n\n// Create two composites to check the effect of filtering by CLOUD_COVER.\nvar badComposite = collection.mean();\nvar goodComposite = filtered.mean();\n\n// Display the composites.\nMap.setCenter(25.8544, -18.08874, 13);\nMap.addLayer(badComposite,\n {bands: ['B3', 'B2', 'B1'], min: 0.05, max: 0.35, gamma: 1.1},\n 'Bad composite');\nMap.addLayer(goodComposite,\n {bands: ['B3', 'B2', 'B1'], min: 0.05, max: 0.35, gamma: 1.1},\n 'Good composite');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Load Landsat 8 data, filter by date, month, and bounds.\ncollection = (\n ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA')\n # Three years of data\n .filterDate('2015-01-01', '2018-01-01')\n # Only Nov-Feb observations\n .filter(ee.Filter.calendarRange(11, 2, 'month'))\n # Intersecting ROI\n .filterBounds(ee.Geometry.Point(25.8544, -18.08874))\n)\n\n# Also filter the collection by the CLOUD_COVER property.\nfiltered = collection.filter(ee.Filter.eq('CLOUD_COVER', 0))\n\n# Create two composites to check the effect of filtering by CLOUD_COVER.\nbad_composite = collection.mean()\ngood_composite = filtered.mean()\n\n# Display the composites.\nm = geemap.Map()\nm.set_center(25.8544, -18.08874, 13)\nm.add_layer(\n bad_composite,\n {'bands': ['B3', 'B2', 'B1'], 'min': 0.05, 'max': 0.35, 'gamma': 1.1},\n 'Bad composite',\n)\nm.add_layer(\n good_composite,\n {'bands': ['B3', 'B2', 'B1'], 'min': 0.05, 'max': 0.35, 'gamma': 1.1},\n 'Good composite',\n)\nm\n```"]]