Über eine ImageCollection iterieren

map() wendet zwar eine Funktion auf jedes Bild in einer Sammlung an, die Funktion wird jedoch für jedes Bild in der Sammlung unabhängig aufgerufen. Angenommen, Sie möchten beispielsweise eine kumulative Anomalie (At) zum Zeitpunkt t aus einer Zeitreihe berechnen. Wenn Sie eine rekursiv definierte Reihe vom Typ At = f(Bildt, At-1) erhalten möchten, funktioniert die Zuordnung nicht, da die Funktion (f) vom vorherigen Ergebnis (At-1) abhängt. Angenommen, Sie möchten eine Reihe von kumulativen Bildern mit Anomalien des normalisierten Differenz-Vegetationsindexes (NDVI) im Vergleich zu einem Referenzwert berechnen. Dabei ist A0 = 0 und f(Imaget, At-1) = Imaget + At-1, wobei At-1 die kumulative Anomalie bis zum Zeitpunkt t-1 und Imaget die Anomalie zum Zeitpunkt t ist. Verwenden Sie imageCollection.iterate(), um diese rekursive Definition von ImageCollection zu erstellen. Im folgenden Beispiel nimmt die Funktion accumulate() zwei Parameter an: ein Bild in der Sammlung und eine Liste aller vorherigen Ausgaben. Bei jedem Aufruf von iterate() wird die Anomalie der laufenden Summe hinzugefügt und das Ergebnis der Liste. Das Endergebnis wird an den ImageCollection-Konstruktor übergeben, um eine neue Bildsequenz zu erhalten:

Code-Editor (JavaScript)

// Load MODIS EVI imagery.
var collection = ee.ImageCollection('MODIS/006/MYD13A1').select('EVI');

// Define reference conditions from the first 10 years of data.
var reference = collection.filterDate('2001-01-01', '2010-12-31')
  // Sort chronologically in descending order.
  .sort('system:time_start', false);

// Compute the mean of the first 10 years.
var mean = reference.mean();

// Compute anomalies by subtracting the 2001-2010 mean from each image in a
// collection of 2011-2014 images. Copy the date metadata over to the
// computed anomaly images in the new collection.
var series = collection.filterDate('2011-01-01', '2014-12-31').map(function(image) {
    return image.subtract(mean).set('system:time_start', image.get('system:time_start'));
});

// Display cumulative anomalies.
Map.setCenter(-100.811, 40.2, 5);
Map.addLayer(series.sum(),
    {min: -60000, max: 60000, palette: ['FF0000', '000000', '00FF00']}, 'EVI anomaly');

// Get the timestamp from the most recent image in the reference collection.
var time0 = reference.first().get('system:time_start');

// Use imageCollection.iterate() to make a collection of cumulative anomaly over time.
// The initial value for iterate() is a list of anomaly images already processed.
// The first anomaly image in the list is just 0, with the time0 timestamp.
var first = ee.List([
  // Rename the first band 'EVI'.
  ee.Image(0).set('system:time_start', time0).select([0], ['EVI'])
]);

// This is a function to pass to Iterate().
// As anomaly images are computed, add them to the list.
var accumulate = function(image, list) {
  // Get the latest cumulative anomaly image from the end of the list with
  // get(-1).  Since the type of the list argument to the function is unknown,
  // it needs to be cast to a List.  Since the return type of get() is unknown,
  // cast it to Image.
  var previous = ee.Image(ee.List(list).get(-1));
  // Add the current anomaly to make a new cumulative anomaly image.
  var added = image.add(previous)
    // Propagate metadata to the new image.
    .set('system:time_start', image.get('system:time_start'));
  // Return the list with the cumulative anomaly inserted.
  return ee.List(list).add(added);
};

// Create an ImageCollection of cumulative anomaly images by iterating.
// Since the return type of iterate is unknown, it needs to be cast to a List.
var cumulative = ee.ImageCollection(ee.List(series.iterate(accumulate, first)));

// Predefine the chart titles.
var title = {
  title: 'Cumulative EVI anomaly over time',
  hAxis: {title: 'Time'},
  vAxis: {title: 'Cumulative EVI anomaly'},
};

// Chart some interesting locations.
var pt1 = ee.Geometry.Point(-65.544, -4.894);
print('Amazon rainforest:',
    ui.Chart.image.series(
      cumulative, pt1, ee.Reducer.first(), 500).setOptions(title));

var pt2 = ee.Geometry.Point(116.4647, 40.1054);
print('Beijing urbanization:',
    ui.Chart.image.series(
      cumulative, pt2, ee.Reducer.first(), 500).setOptions(title));

var pt3 = ee.Geometry.Point(-110.3412, 34.1982);
print('Arizona forest disturbance and recovery:',
    ui.Chart.image.series(
      cumulative, pt3, ee.Reducer.first(), 500).setOptions(title));

Python einrichten

Auf der Seite Python-Umgebung finden Sie Informationen zur Python API und zur Verwendung von geemap für die interaktive Entwicklung.

import ee
import geemap.core as geemap

Colab (Python)

import altair as alt
# Load MODIS EVI imagery.
collection = ee.ImageCollection('MODIS/006/MYD13A1').select('EVI')

# Define reference conditions from the first 10 years of data.
reference = collection.filterDate('2001-01-01', '2010-12-31').sort(
    # Sort chronologically in descending order.
    'system:time_start',
    False,
)

# Compute the mean of the first 10 years.
mean = reference.mean()

# Compute anomalies by subtracting the 2001-2010 mean from each image in a
# collection of 2011-2014 images. Copy the date metadata over to the
# computed anomaly images in the new collection.
series = collection.filterDate('2011-01-01', '2014-12-31').map(
    lambda image: image.subtract(mean).set(
        'system:time_start', image.get('system:time_start')
    )
)

# Display cumulative anomalies.
m = geemap.Map()
m.set_center(-100.811, 40.2, 5)
m.add_layer(
    series.sum(),
    {'min': -60000, 'max': 60000, 'palette': ['FF0000', '000000', '00FF00']},
    'EVI anomaly',
)
display(m)

# Get the timestamp from the most recent image in the reference collection.
time_0 = reference.first().get('system:time_start')

# Use imageCollection.iterate() to make a collection of cumulative anomaly over time.
# The initial value for iterate() is a list of anomaly images already processed.
# The first anomaly image in the list is just 0, with the time_0 timestamp.
first = ee.List([
    # Rename the first band 'EVI'.
    ee.Image(0)
    .set('system:time_start', time_0)
    .select([0], ['EVI'])
])

# This is a function to pass to Iterate().
# As anomaly images are computed, add them to the list.
def accumulate(image, list):
  # Get the latest cumulative anomaly image from the end of the list with
  # get(-1).  Since the type of the list argument to the function is unknown,
  # it needs to be cast to a List.  Since the return type of get() is unknown,
  # cast it to Image.
  previous = ee.Image(ee.List(list).get(-1))
  # Add the current anomaly to make a new cumulative anomaly image.
  added = image.add(previous).set(
      # Propagate metadata to the new image.
      'system:time_start',
      image.get('system:time_start'),
  )
  # Return the list with the cumulative anomaly inserted.
  return ee.List(list).add(added)

# Create an ImageCollection of cumulative anomaly images by iterating.
# Since the return type of iterate is unknown, it needs to be cast to a List.
cumulative = ee.ImageCollection(ee.List(series.iterate(accumulate, first)))

# Predefine the chart titles.
title = 'Cumulative EVI anomaly over time'

# Chart some interesting locations.
def display_chart(region, collection):
  reduced = (
      collection.filterBounds(region)
      .sort('system:time_start')
      .map(
          lambda image: ee.Feature(
              None,
              image.reduceRegion(ee.Reducer.first(), region, 500).set(
                  'time', image.get('system:time_start')
              ),
          )
      )
  )
  reduced_dataframe = ee.data.computeFeatures(
      {'expression': reduced, 'fileFormat': 'PANDAS_DATAFRAME'}
  )
  alt.Chart(reduced_dataframe).mark_line().encode(
      alt.X('time:T').title('Time'),
      alt.Y('EVI:Q').title('Cumulative EVI anomaly'),
  ).properties(title=title).display()

pt_1 = ee.Geometry.Point(-65.544, -4.894)
display('Amazon rainforest:')
display_chart(pt_1, cumulative)

pt_2 = ee.Geometry.Point(116.4647, 40.1054)
display('Beijing urbanization:')
display_chart(pt_2, cumulative)

pt_3 = ee.Geometry.Point(-110.3412, 34.1982)
display('Arizona forest disturbance and recovery:')
display_chart(pt_3, cumulative)

Wenn Sie diese Sequenzen in Diagrammen darstellen, sehen Sie, ob sich der NDVI im Vergleich zu früheren Störungen stabilisiert oder ob er sich in Richtung eines neuen Zustands bewegt. Weitere Informationen zu Diagrammen in Earth Engine finden Sie im Abschnitt „Diagramme“.

Die iterierte Funktion ist in den ausführbaren Vorgängen eingeschränkt. Insbesondere können damit keine Variablen außerhalb der Funktion geändert, nichts ausgegeben und keine JavaScript-Wenn- oder For-Anweisungen verwendet werden. Alle Ergebnisse, die Sie erfassen möchten, oder Zwischeninformationen, die Sie in die nächste Iteration übernehmen möchten, müssen im Rückgabewert der Funktion enthalten sein. Sie können ee.Algorithms.If() verwenden, um bedingte Vorgänge auszuführen.