Itérer sur une ImageCollection

Bien que map() applique une fonction à chaque image d'une collection, la fonction visite chaque image de la collection indépendamment. Par exemple, supposons que vous souhaitiez calculer une anomalie cumulée (At) au moment t à partir d'une série temporelle. Pour obtenir une série définie de manière récursive sous la forme At = f(Imaget, At-1), la mise en correspondance ne fonctionnera pas, car la fonction (f) dépend du résultat précédent (At-1). Par exemple, supposons que vous souhaitiez calculer une série d'images d'anomalies cumulatives de l'indice de végétation par différence normalisée (NDVI) par rapport à une référence. Soit A0 = 0 et f(Imaget, At-1) = Imaget + At-1, où At-1 est l'anomalie cumulée jusqu'au moment t-1 et Imaget est l'anomalie au moment t. Utilisez imageCollection.iterate() pour définir de manière récursive ce ImageCollection. Dans l'exemple suivant, la fonction accumulate() accepte deux paramètres: une image de la collection et une liste de toutes les sorties précédentes. À chaque appel de iterate(), l'anomalie est ajoutée à la somme cumulée et le résultat est ajouté à la liste. Le résultat final est transmis au constructeur ImageCollection pour obtenir une nouvelle séquence d'images:

Éditeur de code (JavaScript)

// Load MODIS EVI imagery.
var collection = ee.ImageCollection('MODIS/006/MYD13A1').select('EVI');

// Define reference conditions from the first 10 years of data.
var reference = collection.filterDate('2001-01-01', '2010-12-31')
  // Sort chronologically in descending order.
  .sort('system:time_start', false);

// Compute the mean of the first 10 years.
var mean = reference.mean();

// Compute anomalies by subtracting the 2001-2010 mean from each image in a
// collection of 2011-2014 images. Copy the date metadata over to the
// computed anomaly images in the new collection.
var series = collection.filterDate('2011-01-01', '2014-12-31').map(function(image) {
    return image.subtract(mean).set('system:time_start', image.get('system:time_start'));
});

// Display cumulative anomalies.
Map.setCenter(-100.811, 40.2, 5);
Map.addLayer(series.sum(),
    {min: -60000, max: 60000, palette: ['FF0000', '000000', '00FF00']}, 'EVI anomaly');

// Get the timestamp from the most recent image in the reference collection.
var time0 = reference.first().get('system:time_start');

// Use imageCollection.iterate() to make a collection of cumulative anomaly over time.
// The initial value for iterate() is a list of anomaly images already processed.
// The first anomaly image in the list is just 0, with the time0 timestamp.
var first = ee.List([
  // Rename the first band 'EVI'.
  ee.Image(0).set('system:time_start', time0).select([0], ['EVI'])
]);

// This is a function to pass to Iterate().
// As anomaly images are computed, add them to the list.
var accumulate = function(image, list) {
  // Get the latest cumulative anomaly image from the end of the list with
  // get(-1).  Since the type of the list argument to the function is unknown,
  // it needs to be cast to a List.  Since the return type of get() is unknown,
  // cast it to Image.
  var previous = ee.Image(ee.List(list).get(-1));
  // Add the current anomaly to make a new cumulative anomaly image.
  var added = image.add(previous)
    // Propagate metadata to the new image.
    .set('system:time_start', image.get('system:time_start'));
  // Return the list with the cumulative anomaly inserted.
  return ee.List(list).add(added);
};

// Create an ImageCollection of cumulative anomaly images by iterating.
// Since the return type of iterate is unknown, it needs to be cast to a List.
var cumulative = ee.ImageCollection(ee.List(series.iterate(accumulate, first)));

// Predefine the chart titles.
var title = {
  title: 'Cumulative EVI anomaly over time',
  hAxis: {title: 'Time'},
  vAxis: {title: 'Cumulative EVI anomaly'},
};

// Chart some interesting locations.
var pt1 = ee.Geometry.Point(-65.544, -4.894);
print('Amazon rainforest:',
    ui.Chart.image.series(
      cumulative, pt1, ee.Reducer.first(), 500).setOptions(title));

var pt2 = ee.Geometry.Point(116.4647, 40.1054);
print('Beijing urbanization:',
    ui.Chart.image.series(
      cumulative, pt2, ee.Reducer.first(), 500).setOptions(title));

var pt3 = ee.Geometry.Point(-110.3412, 34.1982);
print('Arizona forest disturbance and recovery:',
    ui.Chart.image.series(
      cumulative, pt3, ee.Reducer.first(), 500).setOptions(title));

Configuration de Python

Consultez la page Environnement Python pour en savoir plus sur l'API Python et l'utilisation de geemap pour le développement interactif.

import ee
import geemap.core as geemap

Colab (Python)

import altair as alt
# Load MODIS EVI imagery.
collection = ee.ImageCollection('MODIS/006/MYD13A1').select('EVI')

# Define reference conditions from the first 10 years of data.
reference = collection.filterDate('2001-01-01', '2010-12-31').sort(
    # Sort chronologically in descending order.
    'system:time_start',
    False,
)

# Compute the mean of the first 10 years.
mean = reference.mean()

# Compute anomalies by subtracting the 2001-2010 mean from each image in a
# collection of 2011-2014 images. Copy the date metadata over to the
# computed anomaly images in the new collection.
series = collection.filterDate('2011-01-01', '2014-12-31').map(
    lambda image: image.subtract(mean).set(
        'system:time_start', image.get('system:time_start')
    )
)

# Display cumulative anomalies.
m = geemap.Map()
m.set_center(-100.811, 40.2, 5)
m.add_layer(
    series.sum(),
    {'min': -60000, 'max': 60000, 'palette': ['FF0000', '000000', '00FF00']},
    'EVI anomaly',
)
display(m)

# Get the timestamp from the most recent image in the reference collection.
time_0 = reference.first().get('system:time_start')

# Use imageCollection.iterate() to make a collection of cumulative anomaly over time.
# The initial value for iterate() is a list of anomaly images already processed.
# The first anomaly image in the list is just 0, with the time_0 timestamp.
first = ee.List([
    # Rename the first band 'EVI'.
    ee.Image(0)
    .set('system:time_start', time_0)
    .select([0], ['EVI'])
])

# This is a function to pass to Iterate().
# As anomaly images are computed, add them to the list.
def accumulate(image, list):
  # Get the latest cumulative anomaly image from the end of the list with
  # get(-1).  Since the type of the list argument to the function is unknown,
  # it needs to be cast to a List.  Since the return type of get() is unknown,
  # cast it to Image.
  previous = ee.Image(ee.List(list).get(-1))
  # Add the current anomaly to make a new cumulative anomaly image.
  added = image.add(previous).set(
      # Propagate metadata to the new image.
      'system:time_start',
      image.get('system:time_start'),
  )
  # Return the list with the cumulative anomaly inserted.
  return ee.List(list).add(added)

# Create an ImageCollection of cumulative anomaly images by iterating.
# Since the return type of iterate is unknown, it needs to be cast to a List.
cumulative = ee.ImageCollection(ee.List(series.iterate(accumulate, first)))

# Predefine the chart titles.
title = 'Cumulative EVI anomaly over time'

# Chart some interesting locations.
def display_chart(region, collection):
  reduced = (
      collection.filterBounds(region)
      .sort('system:time_start')
      .map(
          lambda image: ee.Feature(
              None,
              image.reduceRegion(ee.Reducer.first(), region, 500).set(
                  'time', image.get('system:time_start')
              ),
          )
      )
  )
  reduced_dataframe = ee.data.computeFeatures(
      {'expression': reduced, 'fileFormat': 'PANDAS_DATAFRAME'}
  )
  alt.Chart(reduced_dataframe).mark_line().encode(
      alt.X('time:T').title('Time'),
      alt.Y('EVI:Q').title('Cumulative EVI anomaly'),
  ).properties(title=title).display()

pt_1 = ee.Geometry.Point(-65.544, -4.894)
display('Amazon rainforest:')
display_chart(pt_1, cumulative)

pt_2 = ee.Geometry.Point(116.4647, 40.1054)
display('Beijing urbanization:')
display_chart(pt_2, cumulative)

pt_3 = ee.Geometry.Point(-110.3412, 34.1982)
display('Arizona forest disturbance and recovery:')
display_chart(pt_3, cumulative)

La représentation graphique de ces séquences indique si l'indice NDVI se stabilise par rapport aux perturbations précédentes ou s'il tend vers un nouvel état. Pour en savoir plus sur les graphiques dans Earth Engine, consultez la section "Graphiques".

Les opérations que la fonction itérée peut effectuer sont limitées. Plus précisément, il ne peut pas modifier les variables en dehors de la fonction, il ne peut rien imprimer et il ne peut pas utiliser les instructions JavaScript "if" ou "for". Tous les résultats que vous souhaitez collecter ou les informations intermédiaires que vous souhaitez transmettre à l'itération suivante doivent figurer dans la valeur renvoyée par la fonction. Vous pouvez utiliser ee.Algorithms.If() pour effectuer des opérations conditionnelles.