Iterowanie w zbiorze obrazów

Funkcja map() stosuje funkcję do każdego obrazu w kolekcji, ale odwiedza każdy obraz w kolekcji niezależnie. Załóżmy na przykład, że chcesz obliczyć kumulatywną anomalię (At) w momencie t z użyciem sekwencji czasowej. Aby uzyskać rekurencyjnie zdefiniowaną serię w formie At = f(Imaget, At-1), mapowanie nie zadziała, ponieważ funkcja (f) zależy od poprzedniego wyniku (At-1). Załóżmy na przykład, że chcesz obliczyć serię znormalizowanych różnicowych wskaźników wegetacji (NDVI) obrazów nieprawidłowości w stosunku do wartości bazowej. Niech A0 = 0, a f(Imaget, At-1) = Imaget + At-1, gdzie At-1 to skumulowana anomalia do czasu t-1, a Imaget to anomalia w momencie t. Użyj imageCollection.iterate(), aby zdefiniować rekurencyjnie ImageCollection. W tym przykładzie funkcja accumulate() przyjmuje 2 parametry: obraz z kolekcji i listę wszystkich poprzednich danych wyjściowych. Przy każdym wywołaniu funkcji iterate() anomalia jest dodawana do sumy bieżącej, a jej wynik jest dodawany do listy. Ostateczny wynik jest przekazywany do konstruktora ImageCollection, aby uzyskać nową sekwencję obrazów:

Edytor kodu (JavaScript)

// Load MODIS EVI imagery.
var collection = ee.ImageCollection('MODIS/006/MYD13A1').select('EVI');

// Define reference conditions from the first 10 years of data.
var reference = collection.filterDate('2001-01-01', '2010-12-31')
  // Sort chronologically in descending order.
  .sort('system:time_start', false);

// Compute the mean of the first 10 years.
var mean = reference.mean();

// Compute anomalies by subtracting the 2001-2010 mean from each image in a
// collection of 2011-2014 images. Copy the date metadata over to the
// computed anomaly images in the new collection.
var series = collection.filterDate('2011-01-01', '2014-12-31').map(function(image) {
    return image.subtract(mean).set('system:time_start', image.get('system:time_start'));
});

// Display cumulative anomalies.
Map.setCenter(-100.811, 40.2, 5);
Map.addLayer(series.sum(),
    {min: -60000, max: 60000, palette: ['FF0000', '000000', '00FF00']}, 'EVI anomaly');

// Get the timestamp from the most recent image in the reference collection.
var time0 = reference.first().get('system:time_start');

// Use imageCollection.iterate() to make a collection of cumulative anomaly over time.
// The initial value for iterate() is a list of anomaly images already processed.
// The first anomaly image in the list is just 0, with the time0 timestamp.
var first = ee.List([
  // Rename the first band 'EVI'.
  ee.Image(0).set('system:time_start', time0).select([0], ['EVI'])
]);

// This is a function to pass to Iterate().
// As anomaly images are computed, add them to the list.
var accumulate = function(image, list) {
  // Get the latest cumulative anomaly image from the end of the list with
  // get(-1).  Since the type of the list argument to the function is unknown,
  // it needs to be cast to a List.  Since the return type of get() is unknown,
  // cast it to Image.
  var previous = ee.Image(ee.List(list).get(-1));
  // Add the current anomaly to make a new cumulative anomaly image.
  var added = image.add(previous)
    // Propagate metadata to the new image.
    .set('system:time_start', image.get('system:time_start'));
  // Return the list with the cumulative anomaly inserted.
  return ee.List(list).add(added);
};

// Create an ImageCollection of cumulative anomaly images by iterating.
// Since the return type of iterate is unknown, it needs to be cast to a List.
var cumulative = ee.ImageCollection(ee.List(series.iterate(accumulate, first)));

// Predefine the chart titles.
var title = {
  title: 'Cumulative EVI anomaly over time',
  hAxis: {title: 'Time'},
  vAxis: {title: 'Cumulative EVI anomaly'},
};

// Chart some interesting locations.
var pt1 = ee.Geometry.Point(-65.544, -4.894);
print('Amazon rainforest:',
    ui.Chart.image.series(
      cumulative, pt1, ee.Reducer.first(), 500).setOptions(title));

var pt2 = ee.Geometry.Point(116.4647, 40.1054);
print('Beijing urbanization:',
    ui.Chart.image.series(
      cumulative, pt2, ee.Reducer.first(), 500).setOptions(title));

var pt3 = ee.Geometry.Point(-110.3412, 34.1982);
print('Arizona forest disturbance and recovery:',
    ui.Chart.image.series(
      cumulative, pt3, ee.Reducer.first(), 500).setOptions(title));

Konfiguracja Pythona

Informacje o interfejsie Python API i o używaniu pakietu geemap do programowania interaktywnego znajdziesz na stronie Python Environment.

import ee
import geemap.core as geemap

Colab (Python)

import altair as alt
# Load MODIS EVI imagery.
collection = ee.ImageCollection('MODIS/006/MYD13A1').select('EVI')

# Define reference conditions from the first 10 years of data.
reference = collection.filterDate('2001-01-01', '2010-12-31').sort(
    # Sort chronologically in descending order.
    'system:time_start',
    False,
)

# Compute the mean of the first 10 years.
mean = reference.mean()

# Compute anomalies by subtracting the 2001-2010 mean from each image in a
# collection of 2011-2014 images. Copy the date metadata over to the
# computed anomaly images in the new collection.
series = collection.filterDate('2011-01-01', '2014-12-31').map(
    lambda image: image.subtract(mean).set(
        'system:time_start', image.get('system:time_start')
    )
)

# Display cumulative anomalies.
m = geemap.Map()
m.set_center(-100.811, 40.2, 5)
m.add_layer(
    series.sum(),
    {'min': -60000, 'max': 60000, 'palette': ['FF0000', '000000', '00FF00']},
    'EVI anomaly',
)
display(m)

# Get the timestamp from the most recent image in the reference collection.
time_0 = reference.first().get('system:time_start')

# Use imageCollection.iterate() to make a collection of cumulative anomaly over time.
# The initial value for iterate() is a list of anomaly images already processed.
# The first anomaly image in the list is just 0, with the time_0 timestamp.
first = ee.List([
    # Rename the first band 'EVI'.
    ee.Image(0)
    .set('system:time_start', time_0)
    .select([0], ['EVI'])
])

# This is a function to pass to Iterate().
# As anomaly images are computed, add them to the list.
def accumulate(image, list):
  # Get the latest cumulative anomaly image from the end of the list with
  # get(-1).  Since the type of the list argument to the function is unknown,
  # it needs to be cast to a List.  Since the return type of get() is unknown,
  # cast it to Image.
  previous = ee.Image(ee.List(list).get(-1))
  # Add the current anomaly to make a new cumulative anomaly image.
  added = image.add(previous).set(
      # Propagate metadata to the new image.
      'system:time_start',
      image.get('system:time_start'),
  )
  # Return the list with the cumulative anomaly inserted.
  return ee.List(list).add(added)

# Create an ImageCollection of cumulative anomaly images by iterating.
# Since the return type of iterate is unknown, it needs to be cast to a List.
cumulative = ee.ImageCollection(ee.List(series.iterate(accumulate, first)))

# Predefine the chart titles.
title = 'Cumulative EVI anomaly over time'

# Chart some interesting locations.
def display_chart(region, collection):
  reduced = (
      collection.filterBounds(region)
      .sort('system:time_start')
      .map(
          lambda image: ee.Feature(
              None,
              image.reduceRegion(ee.Reducer.first(), region, 500).set(
                  'time', image.get('system:time_start')
              ),
          )
      )
  )
  reduced_dataframe = ee.data.computeFeatures(
      {'expression': reduced, 'fileFormat': 'PANDAS_DATAFRAME'}
  )
  alt.Chart(reduced_dataframe).mark_line().encode(
      alt.X('time:T').title('Time'),
      alt.Y('EVI:Q').title('Cumulative EVI anomaly'),
  ).properties(title=title).display()

pt_1 = ee.Geometry.Point(-65.544, -4.894)
display('Amazon rainforest:')
display_chart(pt_1, cumulative)

pt_2 = ee.Geometry.Point(116.4647, 40.1054)
display('Beijing urbanization:')
display_chart(pt_2, cumulative)

pt_3 = ee.Geometry.Point(-110.3412, 34.1982)
display('Arizona forest disturbance and recovery:')
display_chart(pt_3, cumulative)

Wykresy tych sekwencji wskazują, czy NDVI ustabilizował się w stosunku do poprzednich zaburzeń, czy też NDVI wykazuje tendencję do nowego stanu. Więcej informacji o wykresach w Earth Engine znajdziesz w sekcji Wykresy.

Funkcja iteracyjna jest ograniczona w zakresie operacji, które może wykonywać. W szczególności nie może modyfikować zmiennych poza funkcją, nie może niczego wydrukować ani używać instrukcji JavaScript „if” ani „for”. Wszystkie wyniki, które chcesz zebrać, lub informacje pośrednie, które chcesz przenieść do następnej iteracji, muszą być wartością zwracaną funkcji. Do wykonywania operacji warunkowych możesz używać funkcji ee.Algorithms.If().