פעולות מתמטיות
קל לארגן דפים בעזרת אוספים
אפשר לשמור ולסווג תוכן על סמך ההעדפות שלך.
אפשר לבצע פעולות מתמטיות בתמונות באמצעות אופרטורים כמו add()
ו-subtract()
, אבל לחישוב מורכב עם יותר מכמה מונחים, הפונקציה expression()
היא חלופה טובה. מידע נוסף על אופרטורים ועל ביטויים זמין בקטעים הבאים.
אופרטורים
אופרטורים מתמטיים מבצעים פעולות אריתמטיות בסיסיות על פסלי תמונה. הם מקבלים שני מקורות קלט: שתי תמונות או תמונה אחת ומשתנה קבוע, שמתורגם כתמונה קבועה עם פס אחד ללא פיקסלים מוסתרים. הפעולות מתבצעות לכל פיקסל בכל פס.
כדוגמה בסיסית, נניח שרוצים לחשב את אינדקס ההפרש המנורמלי של הצמחייה (NDVI) באמצעות תמונות VIIRS, תוך שימוש באופרטורים add()
, subtract()
ו-divide()
:
Code Editor (JavaScript)
// Load a VIIRS 8-day surface reflectance composite for May 2024.
var viirs202405 = ee.ImageCollection('NASA/VIIRS/002/VNP09H1').filter(
ee.Filter.date('2024-05-01', '2024-05-16')).first();
// Compute NDVI.
var ndvi202405 = viirs202405.select('SurfReflect_I2')
.subtract(viirs202405.select('SurfReflect_I1'))
.divide(viirs202405.select('SurfReflect_I2')
.add(viirs202405.select('SurfReflect_I1')));
הגדרת Python
בדף
סביבת Python מפורט מידע על Python API ועל השימוש ב-geemap
לפיתוח אינטראקטיבי.
import ee
import geemap.core as geemap
Colab (Python)
# Load a VIIRS 8-day surface reflectance composite for May 2024.
viirs202405 = (
ee.ImageCollection('NASA/VIIRS/002/VNP09H1')
.filter(ee.Filter.date('2024-05-01', '2024-05-16'))
.first()
)
# Compute NDVI.
ndvi202405 = (
viirs202405.select('SurfReflect_I2')
.subtract(viirs202405.select('SurfReflect_I1'))
.divide(
viirs202405.select('SurfReflect_I2').add(
viirs202405.select('SurfReflect_I1')
)
)
)
רק הצטלבות הפיקסלים ללא מסכה בין שני מקורות הקלט נלקחת בחשבון ומוחזרת ללא מסכה, כל השאר ממוסתרים. באופן כללי, אם לכל אחד מהקלטים יש רק תדר אחד, הוא משמש כנגד כל התדרים בקלט השני. אם למשתני הקלט יש אותו מספר פסגות אבל לא אותם שמות, הם משמשים בזוגות בסדר הטבעי. השמות של פס ההמרה ייקבעו לפי אורך הקלט הארוך מבין שני הקלטים, או לפי הסדר של הקלט הראשון אם שני הקלטים באורך זהה. הסוג של הפיקסלים בפלט הוא האיחוד של סוגי הקלט.
הדוגמה הבאה של חיסור תמונות בכמה תדרים ממחישה איך התדרים מותאמים באופן אוטומטי, וכתוצאה מכך נוצר "וקטור שינוי" לכל פיקסל בכל תדר שמופיע בו-זמנית.
Code Editor (JavaScript)
// Load a VIIRS 8-day surface reflectance composite for September 2024.
var viirs202409 = ee.ImageCollection('NASA/VIIRS/002/VNP09H1').filter(
ee.Filter.date('2024-09-01', '2024-09-16')).first();
// Compute multi-band difference between the September composite and the
// previously loaded May composite.
var diff = viirs202409.subtract(ndvi202405);
Map.addLayer(diff, {
bands: ['SurfReflect_I1', 'SurfReflect_I2', 'SurfReflect_I3'],
min: -1,
max: 1
}, 'difference');
// Compute the squared difference in each band.
var squaredDifference = diff.pow(2);
Map.addLayer(squaredDifference, {
bands: ['SurfReflect_I1', 'SurfReflect_I2', 'SurfReflect_I3'],
min: 0,
max: 0.7
}, 'squared diff.');
הגדרת Python
בדף
סביבת Python מפורט מידע על Python API ועל השימוש ב-geemap
לפיתוח אינטראקטיבי.
import ee
import geemap.core as geemap
Colab (Python)
# Load a VIIRS 8-day surface reflectance composite for September 2024.
viirs202409 = (
ee.ImageCollection('NASA/VIIRS/002/VNP09H1')
.filter(ee.Filter.date('2024-09-01', '2024-09-16'))
.first()
)
# Compute multi-band difference between the September composite and the
# previously loaded May composite.
diff = viirs202409.subtract(ndvi202405)
m = geemap.Map()
m.add_layer(
diff,
{
'bands': ['SurfReflect_I1', 'SurfReflect_I2', 'SurfReflect_I3'],
'min': -1,
'max': 1,
},
'difference',
)
# Compute the squared difference in each band.
squared_difference = diff.pow(2)
m.add_layer(
squared_difference,
{
'bands': ['SurfReflect_I1', 'SurfReflect_I2', 'SurfReflect_I3'],
'min': 0,
'max': 0.7,
},
'squared diff.',
)
display(m)
בחלק השני של הדוגמה הזו, הפרש הריבועים מחושב באמצעות image.pow(2)
. הרשימה המלאה של אופרטורים מתמטיים שמטפלים בחשבון בסיסי, בטריגונומטריה, בהעלאה בחזקה, בעיגול, בהמרה, בפעולות בייטיות ועוד מופיעה במסמכי התיעוד של ה-API.
ביטויים
כדי להטמיע ביטויים מתמטיים מורכבים יותר, מומלץ להשתמש בפונקציה image.expression()
, שמנתחת ייצוג טקסט של פעולה מתמטית.
בדוגמה הבאה נעשה שימוש ב-expression()
כדי לחשב את מדד הצמחייה המשופרת (EVI):
Code Editor (JavaScript)
// Load a Landsat 8 image.
var image = ee.Image('LANDSAT/LC08/C02/T1_TOA/LC08_044034_20140318');
// Compute the EVI using an expression.
var evi = image.expression(
'2.5 * ((NIR - RED) / (NIR + 6 * RED - 7.5 * BLUE + 1))', {
'NIR': image.select('B5'),
'RED': image.select('B4'),
'BLUE': image.select('B2')
});
Map.centerObject(image, 9);
Map.addLayer(evi, {min: -1, max: 1, palette: ['a6611a', 'f5f5f5', '4dac26']});
הגדרת Python
בדף
סביבת Python מפורט מידע על Python API ועל השימוש ב-geemap
לפיתוח אינטראקטיבי.
import ee
import geemap.core as geemap
Colab (Python)
# Load a Landsat 8 image.
image = ee.Image('LANDSAT/LC08/C02/T1_TOA/LC08_044034_20140318')
# Compute the EVI using an expression.
evi = image.expression(
'2.5 * ((NIR - RED) / (NIR + 6 * RED - 7.5 * BLUE + 1))',
{
'NIR': image.select('B5'),
'RED': image.select('B4'),
'BLUE': image.select('B2'),
},
)
# Define a map centered on San Francisco Bay.
map_evi = geemap.Map(center=[37.4675, -122.1363], zoom=9)
# Add the image layer to the map and display it.
map_evi.add_layer(
evi, {'min': -1, 'max': 1, 'palette': ['a6611a', 'f5f5f5', '4dac26']}, 'evi'
)
display(map_evi)
שימו לב שהארגומנט הראשון של expression()
הוא הייצוג הטקסטואלי של הפעולה המתמטית, והארגומנט השני הוא מילון שבו המפתחות הם שמות המשתנים שנעשה בהם שימוש בביטוי, והערכים הם פסלי התמונה שאליה צריך למפות את המשתנים. אפשר להתייחס לפסים בתמונה בתור b("band name")
או b(index)
, למשל b(0)
, במקום לספק את המילון. אפשר להגדיר פסות מתמונות שאינן הקלט באמצעות מילון מפת הפסות. שימו לב שב-expression()
נעשה שימוש ב'חלוקה ללא שארית', שמבטלת את השארית ומחזירה מספר שלם כשמחלקים בין שני מספרים שלמים. לדוגמה
10 / 20 = 0
. כדי לשנות את ההתנהגות הזו, מכפילים את אחד מהאופרטנדים ב-1.0
: 10 * 1.0 / 20 = 0.5
. רק הצטלבות הפיקסלים ללא מסכה נלקחת בחשבון ומוחזרת ללא מסכה כשבודקים פסות מיותר מתמונה מקור אחת. אופרטורי הביטויים הנתמכים מפורטים בטבלה הבאה.
אופרטורים ל-expression()
סוג |
סמל |
שם |
Arithmetic |
+ - * / % ** |
הוספה, חיסור, כפל, חילוק, מודול, מעריך |
יחסי |
== != < > <= >= |
שווה, לא שווה, קטן מ-, גדול מ- וכו'. |
לוגי |
&& || ! ^ |
And, Or, Not, Xor |
טרינרי |
? : |
If then else |
אלא אם צוין אחרת, התוכן של דף זה הוא ברישיון Creative Commons Attribution 4.0 ודוגמאות הקוד הן ברישיון Apache 2.0. לפרטים, ניתן לעיין במדיניות האתר Google Developers. Java הוא סימן מסחרי רשום של חברת Oracle ו/או של השותפים העצמאיים שלה.
עדכון אחרון: 2025-07-25 (שעון UTC).
[null,null,["עדכון אחרון: 2025-07-25 (שעון UTC)."],[[["\u003cp\u003eEarth Engine provides tools for performing image math, including operators for basic arithmetic and the \u003ccode\u003eexpression()\u003c/code\u003e function for complex computations.\u003c/p\u003e\n"],["\u003cp\u003eOperators like \u003ccode\u003eadd()\u003c/code\u003e, \u003ccode\u003esubtract()\u003c/code\u003e, and \u003ccode\u003edivide()\u003c/code\u003e enable pixel-wise calculations between images or an image and a constant.\u003c/p\u003e\n"],["\u003cp\u003eThe \u003ccode\u003eexpression()\u003c/code\u003e function allows implementing custom formulas by parsing text representations of mathematical operations and mapping variables to image bands.\u003c/p\u003e\n"],["\u003cp\u003eWhen using \u003ccode\u003eexpression()\u003c/code\u003e, ensure to handle integer division appropriately by multiplying one operand by \u003ccode\u003e1.0\u003c/code\u003e to preserve decimal values if needed.\u003c/p\u003e\n"],["\u003cp\u003eBoth operators and expressions automatically handle band matching and masking, considering only unmasked pixels in the calculations.\u003c/p\u003e\n"]]],[],null,["# Mathematical Operations\n\n|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|\n| [Run in Google Colab](https://colab.research.google.com/github/google/earthengine-community/blob/master/guides/linked/generated/image_math.ipynb) | [View source on GitHub](https://github.com/google/earthengine-community/blob/master/guides/linked/generated/image_math.ipynb) |\n\nImage math can be performed using operators like `add()` and\n`subtract()`, but for complex computations with more than a couple of terms, the\n`expression()` function provides a good alternative. See the following sections\nfor more information on [operators](#operators) and\n[expressions](#expressions).\n\nOperators\n---------\n\nMath operators perform basic arithmetic operations on image bands. They take two inputs:\neither two images or one image and a constant term, which\nis interpreted as a single-band constant image with no masked pixels. Operations are performed\nper pixel for each band.\n\nAs a basic example, consider the task of calculating the Normalized Difference Vegetation\nIndex (NDVI) using VIIRS imagery, where `add()`, `subtract()`,\nand `divide()` operators are used:\n\n### Code Editor (JavaScript)\n\n```javascript\n// Load a VIIRS 8-day surface reflectance composite for May 2024.\nvar viirs202405 = ee.ImageCollection('NASA/VIIRS/002/VNP09H1').filter(\n ee.Filter.date('2024-05-01', '2024-05-16')).first();\n\n// Compute NDVI.\nvar ndvi202405 = viirs202405.select('SurfReflect_I2')\n .subtract(viirs202405.select('SurfReflect_I1'))\n .divide(viirs202405.select('SurfReflect_I2')\n .add(viirs202405.select('SurfReflect_I1')));\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Load a VIIRS 8-day surface reflectance composite for May 2024.\nviirs202405 = (\n ee.ImageCollection('NASA/VIIRS/002/VNP09H1')\n .filter(ee.Filter.date('2024-05-01', '2024-05-16'))\n .first()\n)\n\n# Compute NDVI.\nndvi202405 = (\n viirs202405.select('SurfReflect_I2')\n .subtract(viirs202405.select('SurfReflect_I1'))\n .divide(\n viirs202405.select('SurfReflect_I2').add(\n viirs202405.select('SurfReflect_I1')\n )\n )\n)\n```\n| **Note:** the normalized difference operation is available as a shortcut method: [`normalizedDifference()`](/earth-engine/apidocs/ee-image-normalizeddifference).\n\nOnly the intersection of unmasked pixels between the two inputs are\nconsidered and returned as unmasked, all else are masked. In general, if either input has only\none band, then it is used against all the bands in the other input. If the inputs have the same\nnumber of bands, but not the same names, they're used pairwise in the natural order. The\noutput bands are named for the longer of the two inputs, or if they're equal in length, in the\nfirst input's order. The type of the output pixels is the union of the input types.\n\nThe following example of multi-band image subtraction demonstrates how bands are matched\nautomatically, resulting in a \"change vector\" for each pixel for each co-occurring band.\n\n### Code Editor (JavaScript)\n\n```javascript\n// Load a VIIRS 8-day surface reflectance composite for September 2024.\nvar viirs202409 = ee.ImageCollection('NASA/VIIRS/002/VNP09H1').filter(\n ee.Filter.date('2024-09-01', '2024-09-16')).first();\n\n// Compute multi-band difference between the September composite and the\n// previously loaded May composite.\nvar diff = viirs202409.subtract(ndvi202405);\nMap.addLayer(diff, {\n bands: ['SurfReflect_I1', 'SurfReflect_I2', 'SurfReflect_I3'],\n min: -1,\n max: 1\n}, 'difference');\n\n// Compute the squared difference in each band.\nvar squaredDifference = diff.pow(2);\nMap.addLayer(squaredDifference, {\n bands: ['SurfReflect_I1', 'SurfReflect_I2', 'SurfReflect_I3'],\n min: 0,\n max: 0.7\n}, 'squared diff.');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Load a VIIRS 8-day surface reflectance composite for September 2024.\nviirs202409 = (\n ee.ImageCollection('NASA/VIIRS/002/VNP09H1')\n .filter(ee.Filter.date('2024-09-01', '2024-09-16'))\n .first()\n)\n\n# Compute multi-band difference between the September composite and the\n# previously loaded May composite.\ndiff = viirs202409.subtract(ndvi202405)\n\nm = geemap.Map()\nm.add_layer(\n diff,\n {\n 'bands': ['SurfReflect_I1', 'SurfReflect_I2', 'SurfReflect_I3'],\n 'min': -1,\n 'max': 1,\n },\n 'difference',\n)\n\n# Compute the squared difference in each band.\nsquared_difference = diff.pow(2)\n\nm.add_layer(\n squared_difference,\n {\n 'bands': ['SurfReflect_I1', 'SurfReflect_I2', 'SurfReflect_I3'],\n 'min': 0,\n 'max': 0.7,\n },\n 'squared diff.',\n)\ndisplay(m)\n```\n\nIn the second part of this example, the squared difference is computed using\n`image.pow(2)`. For the complete list of mathematical operators handling\nbasic arithmetic, trigonometry, exponentiation, rounding, casting, bitwise operations\nand more, see the [API documentation](/earth-engine/apidocs).\n\nExpressions\n-----------\n\nTo implement more complex mathematical expressions, consider using\n`image.expression()`, which parses a text representation of a math operation.\nThe following example uses `expression()` to compute the Enhanced\nVegetation Index (EVI):\n\n### Code Editor (JavaScript)\n\n```javascript\n// Load a Landsat 8 image.\nvar image = ee.Image('LANDSAT/LC08/C02/T1_TOA/LC08_044034_20140318');\n\n// Compute the EVI using an expression.\nvar evi = image.expression(\n '2.5 * ((NIR - RED) / (NIR + 6 * RED - 7.5 * BLUE + 1))', {\n 'NIR': image.select('B5'),\n 'RED': image.select('B4'),\n 'BLUE': image.select('B2')\n});\n\nMap.centerObject(image, 9);\nMap.addLayer(evi, {min: -1, max: 1, palette: ['a6611a', 'f5f5f5', '4dac26']});\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Load a Landsat 8 image.\nimage = ee.Image('LANDSAT/LC08/C02/T1_TOA/LC08_044034_20140318')\n\n# Compute the EVI using an expression.\nevi = image.expression(\n '2.5 * ((NIR - RED) / (NIR + 6 * RED - 7.5 * BLUE + 1))',\n {\n 'NIR': image.select('B5'),\n 'RED': image.select('B4'),\n 'BLUE': image.select('B2'),\n },\n)\n\n# Define a map centered on San Francisco Bay.\nmap_evi = geemap.Map(center=[37.4675, -122.1363], zoom=9)\n\n# Add the image layer to the map and display it.\nmap_evi.add_layer(\n evi, {'min': -1, 'max': 1, 'palette': ['a6611a', 'f5f5f5', '4dac26']}, 'evi'\n)\ndisplay(map_evi)\n```\n\nObserve that the first argument to `expression()` is the textual representation of\nthe math operation, the second argument is a dictionary where the keys are variable names used\nin the expression and the values are the image bands to which the variables should be\nmapped. Bands in the image may be referred to as `b(\"band name\")` or\n`b(index)`, for example `b(0)`, instead\nof providing the dictionary. Bands can be defined from images other than the input when using\nthe band map dictionary. Note that `expression()` uses \"floor division\", which\ndiscards the remainder and returns an integer when two integers are divided. For example\n`10 / 20 = 0`. To change this behavior, multiply one of the operands by\n`1.0`: `10 * 1.0 / 20 = 0.5`. Only the intersection of unmasked pixels\nare considered and returned as unmasked when bands from more than one source image are\nevaluated. Supported expression operators are listed in the following table.\n\n| Type | Symbol | Name |\n|----------------|---------------------|----------------------------------------------------|\n| **Arithmetic** | + - \\* / % \\*\\* | Add, Subtract, Multiply, Divide, Modulus, Exponent |\n| **Relational** | == != \\\u003c \\\u003e \\\u003c= \\\u003e= | Equal, Not Equal, Less Than, Greater than, etc. |\n| **Logical** | \\&\\& \\|\\| ! \\^ | And, Or, Not, Xor |\n| **Ternary** | ? : | If then else |\n[Operators for `expression()`]"]]