ee.Image.normalizedDifference
קל לארגן דפים בעזרת אוספים
אפשר לשמור ולסווג תוכן על סמך ההעדפות שלך.
מחשבת את ההפרש המנורמל בין שני פסים. אם לא מציינים את הפסים לשימוש, המערכת משתמשת בשני הפסים הראשונים. ההפרש המנורמל מחושב לפי הנוסחה (הערך הראשון − הערך השני) / (הערך הראשון + הערך השני). שימו לב ששם פס התמונה שמוחזר הוא nd, המאפיינים של תמונת הקלט לא נשמרים בתמונת הפלט, וערך פיקסל שלילי באחד מפס הקלט יגרום להסתרת פיקסל הפלט. כדי להימנע מהסתרת ערכי קלט שליליים, אפשר להשתמש בפונקציה
ee.Image.expression()
כדי לחשב את ההפרש הנורמלי.
שימוש | החזרות |
---|
Image.normalizedDifference(bandNames) | תמונה |
ארגומנט | סוג | פרטים |
---|
זה: input | תמונה | תמונת הקלט. |
bandNames | רשימה, ברירת מחדל: null | רשימת שמות שמציינת את הפסים שבהם רוצים להשתמש. אם לא מציינים, המערכת משתמשת בפסים הראשון והשני. |
דוגמאות
עורך הקוד (JavaScript)
// A Landsat 8 surface reflectance image.
var img = ee.Image('LANDSAT/LC08/C02/T1_L2/LC08_044034_20210508');
// Calculate normalized difference vegetation index: (NIR - Red) / (NIR + Red).
var nirBand = 'SR_B5';
var redBand = 'SR_B4';
var ndvi = img.normalizedDifference([nirBand, redBand]);
// Display NDVI result on the map.
Map.setCenter(-122.148, 37.377, 11);
Map.addLayer(ndvi, {min: 0, max: 0.5}, 'NDVI');
הגדרת Python
מידע על Python API ועל שימוש ב-geemap
לפיתוח אינטראקטיבי מופיע בדף
Python Environment.
import ee
import geemap.core as geemap
Colab (Python)
# A Landsat 8 surface reflectance image.
img = ee.Image('LANDSAT/LC08/C02/T1_L2/LC08_044034_20210508')
# Calculate normalized difference vegetation index: (NIR - Red) / (NIR + Red).
nir_band = 'SR_B5'
red_band = 'SR_B4'
ndvi = img.normalizedDifference([nir_band, red_band])
# Display NDVI result on the map.
m = geemap.Map()
m.set_center(-122.148, 37.377, 11)
m.add_layer(ndvi, {'min': 0, 'max': 0.5}, 'NDVI')
m
אלא אם צוין אחרת, התוכן של דף זה הוא ברישיון Creative Commons Attribution 4.0 ודוגמאות הקוד הן ברישיון Apache 2.0. לפרטים, ניתן לעיין במדיניות האתר Google Developers. Java הוא סימן מסחרי רשום של חברת Oracle ו/או של השותפים העצמאיים שלה.
עדכון אחרון: 2025-07-26 (שעון UTC).
[null,null,["עדכון אחרון: 2025-07-26 (שעון UTC)."],[[["\u003cp\u003eComputes the normalized difference between two specified or default image bands using the formula (first - second) / (first + second).\u003c/p\u003e\n"],["\u003cp\u003eReturns a single-band image named 'nd' representing the normalized difference.\u003c/p\u003e\n"],["\u003cp\u003eInput image properties are not preserved in the output, and negative input values in either band result in masked output pixels.\u003c/p\u003e\n"],["\u003cp\u003e\u003ccode\u003eee.Image.expression()\u003c/code\u003e is recommended for handling negative input values and avoiding masking.\u003c/p\u003e\n"]]],[],null,["# ee.Image.normalizedDifference\n\nComputes the normalized difference between two bands. If the bands to use are not specified, uses the first two bands. The normalized difference is computed as (first − second) / (first + second). Note that the returned image band name is 'nd', the input image properties are not retained in the output image, and a negative pixel value in either input band will cause the output pixel to be masked. To avoid masking negative input values, use `ee.Image.expression()` to compute normalized difference.\n\n\u003cbr /\u003e\n\n| Usage | Returns |\n|---------------------------------------------|---------|\n| Image.normalizedDifference`(`*bandNames*`)` | Image |\n\n| Argument | Type | Details |\n|---------------|---------------------|-----------------------------------------------------------------------------------------------------|\n| this: `input` | Image | The input image. |\n| `bandNames` | List, default: null | A list of names specifying the bands to use. If not specified, the first and second bands are used. |\n\nExamples\n--------\n\n### Code Editor (JavaScript)\n\n```javascript\n// A Landsat 8 surface reflectance image.\nvar img = ee.Image('LANDSAT/LC08/C02/T1_L2/LC08_044034_20210508');\n\n// Calculate normalized difference vegetation index: (NIR - Red) / (NIR + Red).\nvar nirBand = 'SR_B5';\nvar redBand = 'SR_B4';\nvar ndvi = img.normalizedDifference([nirBand, redBand]);\n\n// Display NDVI result on the map.\nMap.setCenter(-122.148, 37.377, 11);\nMap.addLayer(ndvi, {min: 0, max: 0.5}, 'NDVI');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# A Landsat 8 surface reflectance image.\nimg = ee.Image('LANDSAT/LC08/C02/T1_L2/LC08_044034_20210508')\n\n# Calculate normalized difference vegetation index: (NIR - Red) / (NIR + Red).\nnir_band = 'SR_B5'\nred_band = 'SR_B4'\nndvi = img.normalizedDifference([nir_band, red_band])\n\n# Display NDVI result on the map.\nm = geemap.Map()\nm.set_center(-122.148, 37.377, 11)\nm.add_layer(ndvi, {'min': 0, 'max': 0.5}, 'NDVI')\nm\n```"]]