ee.Geometry.Polygon.distance
Returns the minimum distance between two geometries.
Usage | Returns |
---|
Polygon.distance(right, maxError, proj, spherical) | Float |
Argument | Type | Details |
---|
this: left | Geometry | The geometry used as the left operand of the operation. |
right | Geometry | The geometry used as the right operand of the operation. |
maxError | ErrorMargin, default: null | The maximum amount of error tolerated when performing any necessary reprojection. |
proj | Projection, default: null | The projection in which to perform the operation. If not specified, the operation will be performed in a spherical coordinate system, and linear distances will be in meters on the sphere. |
spherical | Boolean, default: false | When proj is not specified, if true the calculation will be done on the unit sphere. If false the calculation will be elliptical, taking earth flattening into account. Ignored if proj is specified. Default is false. |
Examples
// Define a Polygon object.
var polygon = ee.Geometry.Polygon(
[[[-122.092, 37.424],
[-122.086, 37.418],
[-122.079, 37.425],
[-122.085, 37.423]]]);
// Define other inputs.
var inputGeom = ee.Geometry.Point(-122.090, 37.423);
// Apply the distance method to the Polygon object.
var polygonDistance = polygon.distance({'right': inputGeom, 'maxError': 1});
// Print the result to the console.
print('polygon.distance(...) =', polygonDistance);
// Display relevant geometries on the map.
Map.setCenter(-122.085, 37.422, 15);
Map.addLayer(polygon,
{'color': 'black'},
'Geometry [black]: polygon');
Map.addLayer(inputGeom,
{'color': 'blue'},
'Parameter [blue]: inputGeom');
Python setup
See the
Python Environment page for information on the Python API and using
geemap
for interactive development.
import ee
import geemap.core as geemap
# Define a Polygon object.
polygon = ee.Geometry.Polygon([[
[-122.092, 37.424],
[-122.086, 37.418],
[-122.079, 37.425],
[-122.085, 37.423],
]])
# Define other inputs.
input_geom = ee.Geometry.Point(-122.090, 37.423)
# Apply the distance method to the Polygon object.
polygon_distance = polygon.distance(right=input_geom, maxError=1)
# Print the result.
display('polygon.distance(...) =', polygon_distance)
# Display relevant geometries on the map.
m = geemap.Map()
m.set_center(-122.085, 37.422, 15)
m.add_layer(polygon, {'color': 'black'}, 'Geometry [black]: polygon')
m.add_layer(input_geom, {'color': 'blue'}, 'Parameter [blue]: input_geom')
m
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-12-23 UTC.
[null,null,["Last updated 2024-12-23 UTC."],[[["Calculates the minimum distance between two geometries, with one being a polygon."],["Returns the distance as a float value, representing the shortest distance between the geometries."],["Optionally allows specifying the projection and maximum error for reprojection during the calculation."],["If a projection isn't specified, the calculation is performed using spherical coordinates, and distances are in meters on the sphere."]]],["The `distance` method calculates the minimum distance between two geometries (`left` and `right`). It accepts optional arguments: `maxError` (tolerated error during reprojection), `proj` (projection for the operation), and `spherical` (spherical or elliptical calculation when `proj` is unspecified). The method returns a float value. The example shows how to use the function, by creating two geometries, one of type Polygon and the other Point, and obtain the minimum distance between them.\n"]]