Usage | Returns |
---|---|
ee.Filter.greaterThan(leftField, rightValue, rightField, leftValue) | Filter |
Argument | Type | Details |
---|---|---|
leftField | String, default: null | A selector for the left operand. Should not be specified if leftValue is specified. |
rightValue | Object, default: null | The value of the right operand. Should not be specified if rightField is specified. |
rightField | String, default: null | A selector for the right operand. Should not be specified if rightValue is specified. |
leftValue | Object, default: null | The value of the left operand. Should not be specified if leftField is specified. |
Examples
Code Editor (JavaScript)
// Field site vegetation characteristics from projects in western USA. var fc = ee.FeatureCollection('BLM/AIM/v1/TerrADat/TerrestrialAIM') .filter('ProjectName == "Colorado NWDO Kremmling FO 2016"'); // Display field plots on the map. Map.setCenter(-107.792, 39.871, 7); Map.addLayer(fc); // Compare the per-feature values of two properties and filter the collection // based on the results of various relational expressions. The two properties // to compare are invasive and non-invasive annual forb cover at each plot. var leftProperty = 'InvAnnForbCover_AH'; var rightProperty = 'NonInvAnnForbCover_AH'; print('Plots where invasive forb cover is…'); print('…EQUAL to non-invasive cover', fc.filter(ee.Filter.equals( {leftField: leftProperty, rightField: rightProperty}))); print('…NOT EQUAL to non-invasive cover', fc.filter(ee.Filter.notEquals( {leftField: leftProperty, rightField: rightProperty}))); print('…LESS THAN non-invasive cover', fc.filter(ee.Filter.lessThan( {leftField: leftProperty, rightField: rightProperty}))); print('…LESS THAN OR EQUAL to non-invasive cover', fc.filter(ee.Filter.lessThanOrEquals( {leftField: leftProperty, rightField: rightProperty}))); print('…GREATER THAN non-invasive cover', fc.filter(ee.Filter.greaterThan( {leftField: leftProperty, rightField: rightProperty}))); print('…GREATER THAN OR EQUAL to non-invasive cover', fc.filter(ee.Filter.greaterThanOrEquals( {leftField: leftProperty, rightField: rightProperty}))); print('…is not greater than 10 percent different than non-invasive cover', fc.filter(ee.Filter.maxDifference( {difference: 10, leftField: leftProperty, rightField: rightProperty}))); // Instead of comparing values of two feature properties using the leftField // and rightField parameters, you can compare a property value (leftProperty) // against a constant value (rightValue). print('Plots where invasive forb cover is greater than 20%', fc.filter(ee.Filter.greaterThan( {leftField: leftProperty, rightValue: 20}))); // You can also swap the operands to assign the constant to the left side of // the relational expression (leftValue) and the feature property on the right // (rightField). Here, we get the complement of the previous example. print('Plots where 20% is greater than invasive forb cover.', fc.filter(ee.Filter.greaterThan( {leftValue: 20, rightField: leftProperty}))); // Binary filters are useful in joins. For example, group all same-site plots // together using a saveAll join. var groupingProp = 'SiteID'; var sitesFc = fc.distinct(groupingProp); var joinFilter = ee.Filter.equals( {leftField: groupingProp, rightField: groupingProp}); var groupedPlots = ee.Join.saveAll('site_plots').apply(sitesFc, fc, joinFilter); print('List of plots in first site', groupedPlots.first().get('site_plots'));
import ee import geemap.core as geemap
Colab (Python)
# Field site vegetation characteristics from projects in western USA. fc = ee.FeatureCollection('BLM/AIM/v1/TerrADat/TerrestrialAIM').filter( 'ProjectName == "Colorado NWDO Kremmling FO 2016"' ) # Display field plots on the map. m = geemap.Map() m.set_center(-107.792, 39.871, 7) m.add_layer(fc) display(m) # Compare the per-feature values of two properties and filter the collection # based on the results of various relational expressions. The two properties # to compare are invasive and non-invasive annual forb cover at each plot. left_property = 'InvAnnForbCover_AH' right_property = 'NonInvAnnForbCover_AH' display('Plots where invasive forb cover is…') display( '…EQUAL to non-invasive cover', fc.filter( ee.Filter.equals(leftField=left_property, rightField=right_property) ), ) display( '…NOT EQUAL to non-invasive cover', fc.filter( ee.Filter.notEquals(leftField=left_property, rightField=right_property) ), ) display( '…LESS THAN non-invasive cover', fc.filter( ee.Filter.lessThan(leftField=left_property, rightField=right_property) ), ) display( '…LESS THAN OR EQUAL to non-invasive cover', fc.filter( ee.Filter.lessThanOrEquals( leftField=left_property, rightField=right_property ) ), ) display( '…GREATER THAN non-invasive cover', fc.filter( ee.Filter.greaterThan( leftField=left_property, rightField=right_property ) ), ) display( '…GREATER THAN OR EQUAL to non-invasive cover', fc.filter( ee.Filter.greaterThanOrEquals( leftField=left_property, rightField=right_property ) ), ) display( '…is not greater than 10 percent different than non-invasive cover', fc.filter( ee.Filter.maxDifference( difference=10, leftField=left_property, rightField=right_property ) ), ) # Instead of comparing values of two feature properties using the leftField # and rightField parameters, you can compare a property value (left_property) # against a constant value (rightValue). display( 'Plots where invasive forb cover is greater than 20%', fc.filter(ee.Filter.greaterThan(leftField=left_property, rightValue=20)), ) # You can also swap the operands to assign the constant to the left side of # the relational expression (leftValue) and the feature property on the right # (rightField). Here, we get the complement of the previous example. display( 'Plots where 20% is greater than invasive forb cover.', fc.filter(ee.Filter.greaterThan(leftValue=20, rightField=left_property)), ) # Binary filters are useful in joins. For example, group all same-site plots # together using a saveAll join. grouping_prop = 'SiteID' sites_fc = fc.distinct(grouping_prop) join_filter = ee.Filter.equals( leftField=grouping_prop, rightField=grouping_prop ) grouped_plots = ee.Join.saveAll('site_plots').apply(sites_fc, fc, join_filter) display('List of plots in first site', grouped_plots.first().get('site_plots'))