ee.Kernel.euclidean
Generates a distance kernel based on Euclidean (straight-line) distance.
Usage | Returns |
---|
ee.Kernel.euclidean(radius, units, normalize, magnitude) | Kernel |
Argument | Type | Details |
---|
radius | Float | The radius of the kernel to generate. |
units | String, default: "pixels" | The system of measurement for the kernel ('pixels' or 'meters'). If the kernel is specified in meters, it will resize when the zoom-level is changed. |
normalize | Boolean, default: false | Normalize the kernel values to sum to 1. |
magnitude | Float, default: 1 | Scale each value by this amount. |
Examples
print('A Euclidean distance kernel', ee.Kernel.euclidean({radius: 3}));
/**
* Output weights matrix (up to 1/1000 precision for brevity)
*
* [4.242, 3.605, 3.162, 3.000, 3.162, 3.605, 4.242]
* [3.605, 2.828, 2.236, 2.000, 2.236, 2.828, 3.605]
* [3.162, 2.236, 1.414, 1.000, 1.414, 2.236, 3.162]
* [3.000, 2.000, 1.000, 0.000, 1.000, 2.000, 3.000]
* [3.162, 2.236, 1.414, 1.000, 1.414, 2.236, 3.162]
* [3.605, 2.828, 2.236, 2.000, 2.236, 2.828, 3.605]
* [4.242, 3.605, 3.162, 3.000, 3.162, 3.605, 4.242]
*/
Python setup
See the
Python Environment page for information on the Python API and using
geemap
for interactive development.
import ee
import geemap.core as geemap
from pprint import pprint
print('A Euclidean distance kernel:')
pprint(ee.Kernel.euclidean(**{'radius': 3}).getInfo())
# Output weights matrix (up to 1/1000 precision for brevity)
# [4.242, 3.605, 3.162, 3.000, 3.162, 3.605, 4.242]
# [3.605, 2.828, 2.236, 2.000, 2.236, 2.828, 3.605]
# [3.162, 2.236, 1.414, 1.000, 1.414, 2.236, 3.162]
# [3.000, 2.000, 1.000, 0.000, 1.000, 2.000, 3.000]
# [3.162, 2.236, 1.414, 1.000, 1.414, 2.236, 3.162]
# [3.605, 2.828, 2.236, 2.000, 2.236, 2.828, 3.605]
# [4.242, 3.605, 3.162, 3.000, 3.162, 3.605, 4.242]
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2023-10-06 UTC.
[null,null,["Last updated 2023-10-06 UTC."],[[["Generates a kernel to weight pixels based on their straight-line distance from the center."],["Kernel values represent the Euclidean distance from the center pixel, optionally normalized and scaled."],["The radius of the kernel and units of measurement (pixels or meters) are configurable."],["When specified in meters, the kernel automatically resizes with zoom level changes."]]],["The `ee.Kernel.euclidean` function generates a distance kernel based on Euclidean distance, returning a Kernel object. Key parameters include `radius`, determining the kernel's size; `units` (\"pixels\" or \"meters\"), dictating the measurement system; `normalize` (default: false), setting whether values sum to 1; and `magnitude` (default: 1), scaling values. An example kernel with a radius of 3 is demonstrated, illustrating the output weight matrix.\n"]]