Usage | Returns |
---|---|
FeatureCollection.kriging(propertyName, shape, range, sill, nugget, maxDistance, reducer) | Image |
Argument | Type | Details |
---|---|---|
this: collection | FeatureCollection | Feature collection to use as source data for the estimation. |
propertyName | String | Property to be estimated (must be numeric). |
shape | String | Semivariogram shape (one of {exponential, gaussian, spherical}). |
range | Float | Semivariogram range, in meters. |
sill | Float | Semivariogram sill. |
nugget | Float | Semivariogram nugget. |
maxDistance | Float, default: null | Radius which determines which features are included in each pixel's computation, in meters. Defaults to the semivariogram's range. |
reducer | Reducer, default: null | Reducer used to collapse the 'propertyName' value of overlapping points into a single value. |
Examples
Code Editor (JavaScript)
/** * This example generates an interpolated surface using kriging from a * FeatureCollection of random points that simulates a table of air temperature * at ocean weather buoys. */ // Average air temperature at 2m height for June, 2020. var img = ee.Image('ECMWF/ERA5/MONTHLY/202006') .select(['mean_2m_air_temperature'], ['tmean']); // Region of interest: South Pacific Ocean. var roi = ee.Geometry.Polygon( [[[-156.053, -16.240], [-156.053, -44.968], [-118.633, -44.968], [-118.633, -16.240]]], null, false); // Sample the mean June 2020 temperature surface at random points in the ROI. var tmeanFc = img.sample( {region: roi, scale: 25000, numPixels: 50, geometries: true}); //250 // Generate an interpolated surface from the points using kriging; parameters // are set according to interpretation of an unshown semivariogram. See section // 2.1 of https://doi.org/10.14214/sf.369 for information on semivariograms. var tmeanImg = tmeanFc.kriging({ propertyName: 'tmean', shape: 'gaussian', range: 2.8e6, sill: 164, nugget: 0.05, maxDistance: 1.8e6, reducer: ee.Reducer.mean() }); // Display the results on the map. Map.setCenter(-137.47, -30.47, 3); Map.addLayer(tmeanImg, {min: 279, max: 300}, 'Temperature (K)');
import ee import geemap.core as geemap
Colab (Python)
# This example generates an interpolated surface using kriging from a # FeatureCollection of random points that simulates a table of air temperature # at ocean weather buoys. # Average air temperature at 2m height for June, 2020. img = ee.Image('ECMWF/ERA5/MONTHLY/202006').select( ['mean_2m_air_temperature'], ['tmean'] ) # Region of interest: South Pacific Ocean. roi = ee.Geometry.Polygon( [[ [-156.053, -16.240], [-156.053, -44.968], [-118.633, -44.968], [-118.633, -16.240], ]], None, False, ) # Sample the mean June 2020 temperature surface at random points in the ROI. tmean_fc = img.sample(region=roi, scale=25000, numPixels=50, geometries=True) # Generate an interpolated surface from the points using kriging parameters # are set according to interpretation of an unshown semivariogram. See section # 2.1 of https://doi.org/10.14214/sf.369 for information on semivariograms. tmean_img = tmean_fc.kriging( propertyName='tmean', shape='gaussian', range=2.8e6, sill=164, nugget=0.05, maxDistance=1.8e6, reducer=ee.Reducer.mean(), ) # Display the results on the map. m = geemap.Map() m.set_center(-137.47, -30.47, 3) m.add_layer( tmean_img, {'min': 279, 'max': 300, 'min': 279, 'max': 300}, 'Temperature (K)', ) m