ee.FeatureCollection.kriging
Returns the results of sampling a Kriging estimator at each pixel.
Usage | Returns | FeatureCollection.kriging(propertyName, shape, range, sill, nugget, maxDistance, reducer) | Image |
Argument | Type | Details | this: collection | FeatureCollection | Feature collection to use as source data for the estimation. |
propertyName | String | Property to be estimated (must be numeric). |
shape | String | Semivariogram shape (one of {exponential, gaussian, spherical}). |
range | Float | Semivariogram range, in meters. |
sill | Float | Semivariogram sill. |
nugget | Float | Semivariogram nugget. |
maxDistance | Float, default: null | Radius which determines which features are included in each pixel's computation, in meters. Defaults to the semivariogram's range. |
reducer | Reducer, default: null | Reducer used to collapse the 'propertyName' value of overlapping points into a single value. |
Examples
Code Editor (JavaScript)
/**
* This example generates an interpolated surface using kriging from a
* FeatureCollection of random points that simulates a table of air temperature
* at ocean weather buoys.
*/
// Average air temperature at 2m height for June, 2020.
var img = ee.Image('ECMWF/ERA5/MONTHLY/202006')
.select(['mean_2m_air_temperature'], ['tmean']);
// Region of interest: South Pacific Ocean.
var roi = ee.Geometry.Polygon(
[[[-156.053, -16.240],
[-156.053, -44.968],
[-118.633, -44.968],
[-118.633, -16.240]]], null, false);
// Sample the mean June 2020 temperature surface at random points in the ROI.
var tmeanFc = img.sample(
{region: roi, scale: 25000, numPixels: 50, geometries: true}); //250
// Generate an interpolated surface from the points using kriging; parameters
// are set according to interpretation of an unshown semivariogram. See section
// 2.1 of https://doi.org/10.14214/sf.369 for information on semivariograms.
var tmeanImg = tmeanFc.kriging({
propertyName: 'tmean',
shape: 'gaussian',
range: 2.8e6,
sill: 164,
nugget: 0.05,
maxDistance: 1.8e6,
reducer: ee.Reducer.mean()
});
// Display the results on the map.
Map.setCenter(-137.47, -30.47, 3);
Map.addLayer(tmeanImg, {min: 279, max: 300}, 'Temperature (K)');
Python setup
See the
Python Environment page for information on the Python API and using
geemap
for interactive development.
import ee
import geemap.core as geemap
Colab (Python)
# This example generates an interpolated surface using kriging from a
# FeatureCollection of random points that simulates a table of air temperature
# at ocean weather buoys.
# Average air temperature at 2m height for June, 2020.
img = ee.Image('ECMWF/ERA5/MONTHLY/202006').select(
['mean_2m_air_temperature'], ['tmean']
)
# Region of interest: South Pacific Ocean.
roi = ee.Geometry.Polygon(
[[
[-156.053, -16.240],
[-156.053, -44.968],
[-118.633, -44.968],
[-118.633, -16.240],
]],
None,
False,
)
# Sample the mean June 2020 temperature surface at random points in the ROI.
tmean_fc = img.sample(region=roi, scale=25000, numPixels=50, geometries=True)
# Generate an interpolated surface from the points using kriging parameters
# are set according to interpretation of an unshown semivariogram. See section
# 2.1 of https://doi.org/10.14214/sf.369 for information on semivariograms.
tmean_img = tmean_fc.kriging(
propertyName='tmean',
shape='gaussian',
range=2.8e6,
sill=164,
nugget=0.05,
maxDistance=1.8e6,
reducer=ee.Reducer.mean(),
)
# Display the results on the map.
m = geemap.Map()
m.set_center(-137.47, -30.47, 3)
m.add_layer(
tmean_img,
{'min': 279, 'max': 300, 'min': 279, 'max': 300},
'Temperature (K)',
)
m
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2023-10-06 UTC.
[null,null,["Last updated 2023-10-06 UTC."],[[["`kriging()` interpolates values across a FeatureCollection using specified Kriging parameters to generate an Image."],["It estimates values for each pixel based on the spatial correlation of a numeric property within the input FeatureCollection."],["The interpolation process is guided by a semivariogram model defined by `shape`, `range`, `sill`, and `nugget`."],["Users can specify a search radius (`maxDistance`) and a reducer to handle overlapping points (`reducer`)."]]],[]]