ee.Geometry.MultiPolygon.distance
Returns the minimum distance between two geometries.
Usage | Returns | MultiPolygon.distance(right, maxError, proj, spherical) | Float |
Argument | Type | Details | this: left | Geometry | The geometry used as the left operand of the operation. |
right | Geometry | The geometry used as the right operand of the operation. |
maxError | ErrorMargin, default: null | The maximum amount of error tolerated when performing any necessary reprojection. |
proj | Projection, default: null | The projection in which to perform the operation. If not specified, the operation will be performed in a spherical coordinate system, and linear distances will be in meters on the sphere. |
spherical | Boolean, default: false | When proj is not specified, if true the calculation will be done on the unit sphere. If false the calculation will be elliptical, taking earth flattening into account. Ignored if proj is specified. Default is false. |
Examples
Code Editor (JavaScript)
// Define a MultiPolygon object.
var multiPolygon = ee.Geometry.MultiPolygon(
[[[[-122.092, 37.424],
[-122.086, 37.418],
[-122.079, 37.425],
[-122.085, 37.423]]],
[[[-122.081, 37.417],
[-122.086, 37.421],
[-122.089, 37.416]]]]);
// Define other inputs.
var inputGeom = ee.Geometry.Point(-122.090, 37.423);
// Apply the distance method to the MultiPolygon object.
var multiPolygonDistance = multiPolygon.distance({'right': inputGeom, 'maxError': 1});
// Print the result to the console.
print('multiPolygon.distance(...) =', multiPolygonDistance);
// Display relevant geometries on the map.
Map.setCenter(-122.085, 37.422, 15);
Map.addLayer(multiPolygon,
{'color': 'black'},
'Geometry [black]: multiPolygon');
Map.addLayer(inputGeom,
{'color': 'blue'},
'Parameter [blue]: inputGeom');
Python setup
See the
Python Environment page for information on the Python API and using
geemap
for interactive development.
import ee
import geemap.core as geemap
Colab (Python)
# Define a MultiPolygon object.
multipolygon = ee.Geometry.MultiPolygon([
[[
[-122.092, 37.424],
[-122.086, 37.418],
[-122.079, 37.425],
[-122.085, 37.423],
]],
[[[-122.081, 37.417], [-122.086, 37.421], [-122.089, 37.416]]],
])
# Define other inputs.
input_geom = ee.Geometry.Point(-122.090, 37.423)
# Apply the distance method to the MultiPolygon object.
multipolygon_distance = multipolygon.distance(right=input_geom, maxError=1)
# Print the result.
display('multipolygon.distance(...) =', multipolygon_distance)
# Display relevant geometries on the map.
m = geemap.Map()
m.set_center(-122.085, 37.422, 15)
m.add_layer(
multipolygon, {'color': 'black'}, 'Geometry [black]: multipolygon'
)
m.add_layer(input_geom, {'color': 'blue'}, 'Parameter [blue]: input_geom')
m
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-12-23 UTC.
[null,null,["Last updated 2024-12-23 UTC."],[[["`distance()` calculates the minimum distance between a MultiPolygon and another geometry."],["The function returns the distance as a float, potentially in meters on the sphere depending on the projection used."],["Optional parameters include `maxError` for reprojection tolerance and `proj` to specify the projection for the calculation."],["The distance is computed from the boundary of the MultiPolygon to the nearest point on the other geometry."]]],[]]