ee.Geometry.MultiLineString.convexHull
Returns the convex hull of the given geometry. The convex hull of a single point is the point itself, the convex hull of collinear points is a line, and the convex hull of everything else is a polygon. Note that a degenerate polygon with all vertices on the same line will result in a line segment.
Usage | Returns |
---|
MultiLineString.convexHull(maxError, proj) | Geometry |
Argument | Type | Details |
---|
this: geometry | Geometry | Calculates the convex hull of this geometry. |
maxError | ErrorMargin, default: null | The maximum amount of error tolerated when performing any necessary reprojection. |
proj | Projection, default: null | The projection in which to perform the operation. If not specified, the operation will be performed in a spherical coordinate system, and linear distances will be in meters on the sphere. |
Examples
// Define a MultiLineString object.
var multiLineString = ee.Geometry.MultiLineString(
[[[-122.088, 37.418], [-122.086, 37.422], [-122.082, 37.418]],
[[-122.087, 37.416], [-122.083, 37.416], [-122.082, 37.419]]]);
// Apply the convexHull method to the MultiLineString object.
var multiLineStringConvexHull = multiLineString.convexHull({'maxError': 1});
// Print the result to the console.
print('multiLineString.convexHull(...) =', multiLineStringConvexHull);
// Display relevant geometries on the map.
Map.setCenter(-122.085, 37.422, 15);
Map.addLayer(multiLineString,
{'color': 'black'},
'Geometry [black]: multiLineString');
Map.addLayer(multiLineStringConvexHull,
{'color': 'red'},
'Result [red]: multiLineString.convexHull');
Python setup
See the
Python Environment page for information on the Python API and using
geemap
for interactive development.
import ee
import geemap.core as geemap
# Define a MultiLineString object.
multilinestring = ee.Geometry.MultiLineString([
[[-122.088, 37.418], [-122.086, 37.422], [-122.082, 37.418]],
[[-122.087, 37.416], [-122.083, 37.416], [-122.082, 37.419]],
])
# Apply the convexHull method to the MultiLineString object.
multilinestring_convex_hull = multilinestring.convexHull(maxError=1)
# Print the result.
display('multilinestring.convexHull(...) =', multilinestring_convex_hull)
# Display relevant geometries on the map.
m = geemap.Map()
m.set_center(-122.085, 37.422, 15)
m.add_layer(
multilinestring, {'color': 'black'}, 'Geometry [black]: multilinestring'
)
m.add_layer(
multilinestring_convex_hull,
{'color': 'red'},
'Result [red]: multilinestring.convexHull',
)
m
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2024-07-13 UTC.
[null,null,["Last updated 2024-07-13 UTC."],[[["`convexHull()` returns the smallest convex Geometry that contains all the points in the input Geometry."],["The returned Geometry type can be a point, a line, or a polygon depending on the input Geometry."],["This method accepts optional `maxError` and `proj` parameters for reprojection purposes."],["Degenerate polygons, where all vertices lie on the same line, will result in a line segment output."]]],["The `convexHull` method calculates the convex hull of a given geometry. For a single point, it returns the point; for collinear points, it returns a line. Otherwise, it returns a polygon, which may be a line segment if degenerate. The method accepts `maxError` and `proj` arguments to control reprojection and coordinate systems, respectively. It is demonstrated using a `MultiLineString` object in both JavaScript and Python, showing how to create it and visualizing the original geometry and its convex hull.\n"]]