ee.Classifier.smileRandomForest

Creates an empty Random Forest classifier.
UsageReturns
ee.Classifier.smileRandomForest(numberOfTrees, variablesPerSplit, minLeafPopulation, bagFraction, maxNodes, seed)Classifier
ArgumentTypeDetails
numberOfTreesIntegerThe number of decision trees to create.
variablesPerSplitInteger, default: nullThe number of variables per split. If unspecified, uses the square root of the number of variables.
minLeafPopulationInteger, default: 1Only create nodes whose training set contains at least this many points.
bagFractionFloat, default: 0.5The fraction of input to bag per tree.
maxNodesInteger, default: nullThe maximum number of leaf nodes in each tree. If unspecified, defaults to no limit.
seedInteger, default: 0The randomization seed.

Examples

Code Editor (JavaScript)

// A Sentinel-2 surface reflectance image, reflectance bands selected,
// serves as the source for training and prediction in this contrived example.
var img = ee.Image('COPERNICUS/S2_SR/20210109T185751_20210109T185931_T10SEG')
              .select('B.*');

// ESA WorldCover land cover map, used as label source in classifier training.
var lc = ee.Image('ESA/WorldCover/v100/2020');

// Remap the land cover class values to a 0-based sequential series.
var classValues = [10, 20, 30, 40, 50, 60, 70, 80, 90, 95, 100];
var remapValues = ee.List.sequence(0, 10);
var label = 'lc';
lc = lc.remap(classValues, remapValues).rename(label).toByte();

// Add land cover as a band of the reflectance image and sample 100 pixels at
// 10 m scale from each land cover class within a region of interest.
var roi = ee.Geometry.Rectangle(-122.347, 37.743, -122.024, 37.838);
var sample = img.addBands(lc).stratifiedSample({
  numPoints: 100,
  classBand: label,
  region: roi,
  scale: 10,
  geometries: true
});

// Add a random value field to the sample and use it to approximately split 80%
// of the features into a training set and 20% into a validation set.
sample = sample.randomColumn();
var trainingSample = sample.filter('random <= 0.8');
var validationSample = sample.filter('random > 0.8');

// Train a 10-tree random forest classifier from the training sample.
var trainedClassifier = ee.Classifier.smileRandomForest(10).train({
  features: trainingSample,
  classProperty: label,
  inputProperties: img.bandNames()
});

// Get information about the trained classifier.
print('Results of trained classifier', trainedClassifier.explain());

// Get a confusion matrix and overall accuracy for the training sample.
var trainAccuracy = trainedClassifier.confusionMatrix();
print('Training error matrix', trainAccuracy);
print('Training overall accuracy', trainAccuracy.accuracy());

// Get a confusion matrix and overall accuracy for the validation sample.
validationSample = validationSample.classify(trainedClassifier);
var validationAccuracy = validationSample.errorMatrix(label, 'classification');
print('Validation error matrix', validationAccuracy);
print('Validation accuracy', validationAccuracy.accuracy());

// Classify the reflectance image from the trained classifier.
var imgClassified = img.classify(trainedClassifier);

// Add the layers to the map.
var classVis = {
  min: 0,
  max: 10,
  palette: ['006400' ,'ffbb22', 'ffff4c', 'f096ff', 'fa0000', 'b4b4b4',
            'f0f0f0', '0064c8', '0096a0', '00cf75', 'fae6a0']
};
Map.setCenter(-122.184, 37.796, 12);
Map.addLayer(img, {bands: ['B11', 'B8', 'B3'], min: 100, max: 3500}, 'img');
Map.addLayer(lc, classVis, 'lc');
Map.addLayer(imgClassified, classVis, 'Classified');
Map.addLayer(roi, {color: 'white'}, 'ROI', false, 0.5);
Map.addLayer(trainingSample, {color: 'black'}, 'Training sample', false);
Map.addLayer(validationSample, {color: 'white'}, 'Validation sample', false);