Earth Engine 将推出
非商业配额层级,以保护共享计算资源并确保为所有人提供可靠的性能。所有非商业项目都需要在
2026 年 4 月 27 日之前选择配额层级,否则系统会默认使用 Community 层级。层级配额将于
2026 年 4 月 27 日对所有项目生效(无论层级选择日期如何)。
了解详情。
ee.FeatureCollection.flatten
使用集合让一切井井有条
根据您的偏好保存内容并对其进行分类。
使集合的集合扁平化。
| 用法 | 返回 |
|---|
FeatureCollection.flatten() | FeatureCollection |
| 参数 | 类型 | 详细信息 |
|---|
此:collection | FeatureCollection | 集合的输入集合。 |
示例
代码编辑器 (JavaScript)
// Counties in New Mexico, USA.
var counties = ee.FeatureCollection('TIGER/2018/Counties')
.filter('STATEFP == "35"');
// Monthly climate and climatic water balance surfaces for January 2020.
var climate = ee.ImageCollection('IDAHO_EPSCOR/TERRACLIMATE')
.filterDate('2020-01', '2020-02');
// Calculate mean climate variables for each county per climate surface
// time step. The result is a FeatureCollection of FeatureCollections.
var countiesClimate = climate.map(function(image) {
return image.reduceRegions({
collection: counties,
reducer: ee.Reducer.mean(),
scale: 5000,
crs: 'EPSG:4326'
});
});
// Note that a printed FeatureCollection of FeatureCollections is not
// recursively expanded, you cannot view metadata of the features within the
// nested collections until you isolate a single collection or flatten the
// collections.
print('FeatureCollection of FeatureCollections', countiesClimate);
print('Flattened FeatureCollection of FeatureCollections',
countiesClimate.flatten());
Python 设置
如需了解 Python API 和如何使用 geemap 进行交互式开发,请参阅
Python 环境页面。
import ee
import geemap.core as geemap
Colab (Python)
# Counties in New Mexico, USA.
counties = ee.FeatureCollection('TIGER/2018/Counties').filter('STATEFP == "35"')
# Monthly climate and climatic water balance surfaces for January 2020.
climate = ee.ImageCollection('IDAHO_EPSCOR/TERRACLIMATE').filterDate(
'2020-01', '2020-02')
# Calculate mean climate variables for each county per climate surface
# time step. The result is a FeatureCollection of FeatureCollections.
def reduce_mean(image):
return image.reduceRegions(**{
'collection': counties,
'reducer': ee.Reducer.mean(),
'scale': 5000,
'crs': 'EPSG:4326'
})
counties_climate = climate.map(reduce_mean)
# Note that a printed FeatureCollection of FeatureCollections is not
# recursively expanded, you cannot view metadata of the features within the
# nested collections until you isolate a single collection or flatten the
# collections.
display('FeatureCollection of FeatureCollections:', counties_climate)
display('Flattened FeatureCollection of FeatureCollections:',
counties_climate.flatten())
如未另行说明,那么本页面中的内容已根据知识共享署名 4.0 许可获得了许可,并且代码示例已根据 Apache 2.0 许可获得了许可。有关详情,请参阅 Google 开发者网站政策。Java 是 Oracle 和/或其关联公司的注册商标。
最后更新时间 (UTC):2025-10-30。
[null,null,["最后更新时间 (UTC):2025-10-30。"],[],["The `flatten()` method transforms a nested `FeatureCollection` of `FeatureCollections` into a single, flat `FeatureCollection`. It takes a `FeatureCollection` as input and returns a flattened `FeatureCollection`. This allows for the metadata of features within the nested collections to be viewed, which is not possible with unflattened collections. An example demonstrates calculating mean climate variables for counties per climate surface timestep and then flattening the resulting nested collection.\n"]]