Informacje o obrazie
Zadbaj o dobrą organizację dzięki kolekcji
Zapisuj i kategoryzuj treści zgodnie ze swoimi preferencjami.
Jak wspomniano w dokumentacji Pierwsze kroki, dane rastrowe są w Earth Engine reprezentowane jako obiekty Image
. Obrazy składają się z co najmniej 1 pasma, a każde z nich ma swoją nazwę, typ danych, skalę, maskę i projekcję. Każdy obraz ma metadane zapisane jako zbiór właściwości.
ee.Image
konstruktor
Obrazy można wczytywać, wklejając identyfikator zasobu Earth Engine do konstruktora ee.Image
. Identyfikatory obrazów znajdziesz w katalogu danych.
Na przykład do cyfrowego modelu rzeźby terenu (NASADEM):
Edytor kodu (JavaScript)
var loadedImage = ee.Image('NASA/NASADEM_HGT/001');
Konfiguracja Pythona
Informacje o interfejsie Python API i o używaniu pakietu geemap
do programowania interaktywnego znajdziesz na stronie
Python Environment.
import ee
import geemap.core as geemap
Colab (Python)
loaded_image = ee.Image('NASA/NASADEM_HGT/001')
Pamiętaj, że znalezienie obrazu za pomocą narzędzia do wyszukiwania w Edytorze kodu działa w taki sam sposób. Po zaimportowaniu zasobu w sekcji importów w Edytorze kodu zostanie utworzony kod tworzenia obrazu. Jako argument konstruktora ee.Image
możesz też podać osobisty identyfikator zasobu.
Uzyskaj ee.Image
z ee.ImageCollection
Standardowym sposobem na uzyskanie obrazu z kolekcji jest jej przefiltrowanie, przy czym filtry są sortowane według malejącej się specyficzności. Aby na przykład pobrać obraz z zbioru Sentinel-2 z odbiciem powierzchniowym:
Edytor kodu (JavaScript)
var first = ee.ImageCollection('COPERNICUS/S2_SR')
.filterBounds(ee.Geometry.Point(-70.48, 43.3631))
.filterDate('2019-01-01', '2019-12-31')
.sort('CLOUDY_PIXEL_PERCENTAGE')
.first();
Map.centerObject(first, 11);
Map.addLayer(first, {bands: ['B4', 'B3', 'B2'], min: 0, max: 2000}, 'first');
Konfiguracja Pythona
Informacje o interfejsie Python API i o używaniu pakietu geemap
do programowania interaktywnego znajdziesz na stronie
Python Environment.
import ee
import geemap.core as geemap
Colab (Python)
first = (
ee.ImageCollection('COPERNICUS/S2_SR')
.filterBounds(ee.Geometry.Point(-70.48, 43.3631))
.filterDate('2019-01-01', '2019-12-31')
.sort('CLOUDY_PIXEL_PERCENTAGE')
.first()
)
# Define a map centered on southern Maine.
m = geemap.Map(center=[43.7516, -70.8155], zoom=11)
# Add the image layer to the map and display it.
m.add_layer(
first, {'bands': ['B4', 'B3', 'B2'], 'min': 0, 'max': 2000}, 'first'
)
display(m)
Pamiętaj, że sortowanie następuje po zastosowaniu filtrów. Unikaj sortowania całej kolekcji.
Obrazy z Cloud GeoTIFF
Za pomocą ee.Image.loadGeoTIFF()
możesz wczytywać obrazy z optymalizacją pod kątem chmury w formacie GeoTIFF w Google Cloud Storage.
Na przykład publiczny zbiór danych Landsat hostowany w Google Cloud zawiera ten plik GeoTIFF, który odpowiada pasmowi 5 z sceny Landsat 8. Możesz załadować ten obraz z Cloud Storage za pomocą ee.Image.loadGeoTIFF()
:
Edytor kodu (JavaScript)
var uri = 'gs://gcp-public-data-landsat/LC08/01/001/002/' +
'LC08_L1GT_001002_20160817_20170322_01_T2/' +
'LC08_L1GT_001002_20160817_20170322_01_T2_B5.TIF';
var cloudImage = ee.Image.loadGeoTIFF(uri);
print(cloudImage);
Konfiguracja Pythona
Informacje o interfejsie Python API i o używaniu pakietu geemap
do programowania interaktywnego znajdziesz na stronie
Python Environment.
import ee
import geemap.core as geemap
Colab (Python)
uri = (
'gs://gcp-public-data-landsat/LC08/01/001/002/'
+ 'LC08_L1GT_001002_20160817_20170322_01_T2/'
+ 'LC08_L1GT_001002_20160817_20170322_01_T2_B5.TIF'
)
cloud_image = ee.Image.loadGeoTIFF(uri)
display(cloud_image)
Pamiętaj, że jeśli chcesz ponownie załadować zoptymalizowany pod kątem chmury plik GeoTIFF, który wyeksportowałeś z Earth Engine do Cloud Storage, podczas eksportu ustaw opcję cloudOptimized
na prawda zgodnie z opisem tutaj.
Obrazy z matryc Zarr v2
Aby wczytać obraz z tablicy Zarr v2 w Google Cloud Storage, możesz użyć funkcji ee.Image.loadZarrV2Array()
. Na przykład publiczny zbiór danych ERA5 hostowany w Google Cloud zawiera ten tablica Zarr v2, odpowiadającą metry wody, która wyparowała z powierzchni Ziemi. Możesz załadować tę tablicę z Cloud Storage za pomocą ee.Image.loadZarrV2Array()
:
Edytor kodu (JavaScript)
var timeStart = 1000000;
var timeEnd = 1000010;
var zarrV2ArrayImage = ee.Image.loadZarrV2Array({
uri:
'gs://gcp-public-data-arco-era5/ar/full_37-1h-0p25deg-chunk-1.zarr-v3/evaporation/.zarray',
proj: 'EPSG:4326',
starts: [timeStart],
ends: [timeEnd]
});
print(zarrV2ArrayImage);
Map.addLayer(zarrV2ArrayImage, {min: -0.0001, max: 0.00005}, 'Evaporation');
Konfiguracja Pythona
Informacje o interfejsie Python API i o używaniu pakietu geemap
do programowania interaktywnego znajdziesz na stronie
Python Environment.
import ee
import geemap.core as geemap
Colab (Python)
time_start = 1000000
time_end = 1000010
zarr_v2_array_image = ee.Image.loadZarrV2Array(
uri='gs://gcp-public-data-arco-era5/ar/full_37-1h-0p25deg-chunk-1.zarr-v3/evaporation/.zarray',
proj='EPSG:4326',
starts=[time_start],
ends=[time_end],
)
display(zarr_v2_array_image)
m.add_layer(
zarr_v2_array_image, {'min': -0.0001, 'max': 0.00005}, 'Evaporation'
)
m
Stałe obrazy
Oprócz wczytywania obrazów według identyfikatora możesz też tworzyć obrazy na podstawie stałych, list lub innych odpowiednich obiektów Earth Engine. Poniżej znajdziesz metody tworzenia obrazów, uzyskiwania podzbiorów pasm i modyfikowania pasm:
Edytor kodu (JavaScript)
// Create a constant image.
var image1 = ee.Image(1);
print(image1);
// Concatenate two images into one multi-band image.
var image2 = ee.Image(2);
var image3 = ee.Image.cat([image1, image2]);
print(image3);
// Create a multi-band image from a list of constants.
var multiband = ee.Image([1, 2, 3]);
print(multiband);
// Select and (optionally) rename bands.
var renamed = multiband.select(
['constant', 'constant_1', 'constant_2'], // old names
['band1', 'band2', 'band3'] // new names
);
print(renamed);
// Add bands to an image.
var image4 = image3.addBands(ee.Image(42));
print(image4);
Konfiguracja Pythona
Informacje o interfejsie Python API i o używaniu pakietu geemap
do programowania interaktywnego znajdziesz na stronie
Python Environment.
import ee
import geemap.core as geemap
Colab (Python)
# Create a constant image.
image_1 = ee.Image(1)
display(image_1)
# Concatenate two images into one multi-band image.
image_2 = ee.Image(2)
image_3 = ee.Image.cat([image_1, image_2])
display(image_3)
# Create a multi-band image from a list of constants.
multiband = ee.Image([1, 2, 3])
display(multiband)
# Select and (optionally) rename bands.
renamed = multiband.select(
['constant', 'constant_1', 'constant_2'], # old names
['band1', 'band2', 'band3'], # new names
)
display(renamed)
# Add bands to an image.
image_4 = image_3.addBands(ee.Image(42))
display(image_4)
O ile nie stwierdzono inaczej, treść tej strony jest objęta licencją Creative Commons – uznanie autorstwa 4.0, a fragmenty kodu są dostępne na licencji Apache 2.0. Szczegółowe informacje na ten temat zawierają zasady dotyczące witryny Google Developers. Java jest zastrzeżonym znakiem towarowym firmy Oracle i jej podmiotów stowarzyszonych.
Ostatnia aktualizacja: 2025-07-25 UTC.
[null,null,["Ostatnia aktualizacja: 2025-07-25 UTC."],[[["\u003cp\u003eIn Earth Engine, raster data is represented as \u003ccode\u003eImage\u003c/code\u003e objects, which can be created by loading existing assets or by defining them with constant values.\u003c/p\u003e\n"],["\u003cp\u003e\u003ccode\u003eImage\u003c/code\u003e objects can be created from Earth Engine assets, \u003ccode\u003eImageCollection\u003c/code\u003e objects, and Cloud Optimized GeoTIFFs (COG) stored in Google Cloud Storage.\u003c/p\u003e\n"],["\u003cp\u003eImages in Earth Engine are composed of bands, each with its own data type, scale, mask, and projection, and images can be manipulated using methods such as \u003ccode\u003eselect\u003c/code\u003e, \u003ccode\u003eaddBands\u003c/code\u003e, and \u003ccode\u003ecat\u003c/code\u003e.\u003c/p\u003e\n"],["\u003cp\u003e\u003ccode\u003eImageCollection\u003c/code\u003e objects can be filtered and sorted to retrieve specific images, and \u003ccode\u003eee.Image.loadGeoTIFF()\u003c/code\u003e is used to load images from Cloud Optimized GeoTIFFs in Cloud Storage.\u003c/p\u003e\n"],["\u003cp\u003eConstant images can be created from numerical values, lists of values, and other suitable Earth Engine objects, allowing for flexible image manipulation and analysis.\u003c/p\u003e\n"]]],[],null,["# Image Overview\n\n|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|\n| [Run in Google Colab](https://colab.research.google.com/github/google/earthengine-community/blob/master/guides/linked/generated/image_overview.ipynb) | [View source on GitHub](https://github.com/google/earthengine-community/blob/master/guides/linked/generated/image_overview.ipynb) |\n\nAs mentioned in the [Get Started](/earth-engine/guides/getstarted#earth-engine-data-structures)\ndoc, raster data are represented as `Image` objects in Earth Engine. Images are\ncomposed of one or more bands and each band has its own name, data type, scale, mask\nand projection. Each image has metadata stored as a set of properties.\n\n`ee.Image` constructor\n----------------------\n\nImages can be loaded by pasting an Earth Engine asset ID into the `ee.Image`\nconstructor. You can find image IDs in the [data catalog](/earth-engine/datasets).\nFor example, to a digial elevation model ([NASADEM](/earth-engine/datasets/catalog/NASA_NASADEM_HGT_001)):\n\n### Code Editor (JavaScript)\n\n```javascript\nvar loadedImage = ee.Image('NASA/NASADEM_HGT/001');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\nloaded_image = ee.Image('NASA/NASADEM_HGT/001')\n```\n\n\nNote that finding an image through\n[the Code Editor search tool](/earth-engine/guides/playground#search-tool)\nis equivalent. When you import the asset, the image construction code is written\nfor you in the [imports section of the\nCode Editor](/earth-engine/guides/playground#imports). You can also use a personal\n[asset ID](/earth-engine/guides/manage_assets#asset_id) as the argument to the\n`ee.Image` constructor.\n\nGet an `ee.Image` from an `ee.ImageCollection`\n----------------------------------------------\n\n\nThe standard way to get an image out of a collection is to filter the collection, with\nfilters in order of decreasing specificity. For example, to get an image out of the\n[Sentinel-2 surface reflectance collection](/earth-engine/datasets/catalog/COPERNICUS_S2_SR):\n\n### Code Editor (JavaScript)\n\n```javascript\nvar first = ee.ImageCollection('COPERNICUS/S2_SR')\n .filterBounds(ee.Geometry.Point(-70.48, 43.3631))\n .filterDate('2019-01-01', '2019-12-31')\n .sort('CLOUDY_PIXEL_PERCENTAGE')\n .first();\nMap.centerObject(first, 11);\nMap.addLayer(first, {bands: ['B4', 'B3', 'B2'], min: 0, max: 2000}, 'first');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\nfirst = (\n ee.ImageCollection('COPERNICUS/S2_SR')\n .filterBounds(ee.Geometry.Point(-70.48, 43.3631))\n .filterDate('2019-01-01', '2019-12-31')\n .sort('CLOUDY_PIXEL_PERCENTAGE')\n .first()\n)\n\n# Define a map centered on southern Maine.\nm = geemap.Map(center=[43.7516, -70.8155], zoom=11)\n\n# Add the image layer to the map and display it.\nm.add_layer(\n first, {'bands': ['B4', 'B3', 'B2'], 'min': 0, 'max': 2000}, 'first'\n)\ndisplay(m)\n```\n\n\nNote that the sort is *after* the filters. Avoid sorting the entire collection.\n\nImages from Cloud GeoTIFFs\n--------------------------\n\n\nYou can use `ee.Image.loadGeoTIFF()` to load images from\n[Cloud Optimized\nGeoTIFFs](https://github.com/cogeotiff/cog-spec/blob/master/spec.md) in [Google Cloud Storage](https://cloud.google.com/storage).\nFor example, the\n[public\nLandsat dataset](https://console.cloud.google.com/marketplace/details/usgs-public-data/landast) hosted in Google Cloud contains\n[this\nGeoTIFF](https://console.cloud.google.com/storage/browser/_details/gcp-public-data-landsat/LC08/01/001/002/LC08_L1GT_001002_20160817_20170322_01_T2/LC08_L1GT_001002_20160817_20170322_01_T2_B5.TIF), corresponding to band 5 from a Landsat 8 scene. You can load this image from\nCloud Storage using `ee.Image.loadGeoTIFF()`:\n\n### Code Editor (JavaScript)\n\n```javascript\nvar uri = 'gs://gcp-public-data-landsat/LC08/01/001/002/' +\n 'LC08_L1GT_001002_20160817_20170322_01_T2/' +\n 'LC08_L1GT_001002_20160817_20170322_01_T2_B5.TIF';\nvar cloudImage = ee.Image.loadGeoTIFF(uri);\nprint(cloudImage);\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\nuri = (\n 'gs://gcp-public-data-landsat/LC08/01/001/002/'\n + 'LC08_L1GT_001002_20160817_20170322_01_T2/'\n + 'LC08_L1GT_001002_20160817_20170322_01_T2_B5.TIF'\n)\ncloud_image = ee.Image.loadGeoTIFF(uri)\ndisplay(cloud_image)\n```\n\n\nNote that if you want to reload a Cloud Optimized GeoTIFF that you\n[export from Earth Engine to\nCloud Storage](/earth-engine/guides/exporting#to-cloud-storage), when you do the export, set\n`cloudOptimized` to **true** as\ndescribed [here](/earth-engine/guides/exporting#configuration-parameters).\n\nImages from Zarr v2 arrays\n--------------------------\n\n\nYou can use `ee.Image.loadZarrV2Array()` to load an image from a\n[Zarr v2 array](https://zarr-specs.readthedocs.io/en/latest/v2/v2.0.html) in\n[Google Cloud Storage](https://cloud.google.com/storage). For example, the public\nERA5 dataset hosted in Google Cloud contains\n[this Zarr v2 array](https://console.cloud.google.com/storage/browser/_details/gcp-public-data-arco-era5/ar/full_37-1h-0p25deg-chunk-1.zarr-v3/evaporation/.zarray),\ncorresponding to meters of water that has evaporated from the Earth's surface. You can load\nthis array from Cloud Storage using `ee.Image.loadZarrV2Array()`:\n\n### Code Editor (JavaScript)\n\n```javascript\nvar timeStart = 1000000;\nvar timeEnd = 1000010;\nvar zarrV2ArrayImage = ee.Image.loadZarrV2Array({\n uri:\n 'gs://gcp-public-data-arco-era5/ar/full_37-1h-0p25deg-chunk-1.zarr-v3/evaporation/.zarray',\n proj: 'EPSG:4326',\n starts: [timeStart],\n ends: [timeEnd]\n});\nprint(zarrV2ArrayImage);\nMap.addLayer(zarrV2ArrayImage, {min: -0.0001, max: 0.00005}, 'Evaporation');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\ntime_start = 1000000\ntime_end = 1000010\nzarr_v2_array_image = ee.Image.loadZarrV2Array(\n uri='gs://gcp-public-data-arco-era5/ar/full_37-1h-0p25deg-chunk-1.zarr-v3/evaporation/.zarray',\n proj='EPSG:4326',\n starts=[time_start],\n ends=[time_end],\n)\n\ndisplay(zarr_v2_array_image)\n\nm.add_layer(\n zarr_v2_array_image, {'min': -0.0001, 'max': 0.00005}, 'Evaporation'\n)\nm\n```\n\nConstant images\n---------------\n\nIn addition to loading images by ID, you can also create images\nfrom constants, lists or other suitable Earth Engine objects. The following illustrates\nmethods for creating images, getting band subsets, and manipulating bands:\n\n### Code Editor (JavaScript)\n\n```javascript\n// Create a constant image.\nvar image1 = ee.Image(1);\nprint(image1);\n\n// Concatenate two images into one multi-band image.\nvar image2 = ee.Image(2);\nvar image3 = ee.Image.cat([image1, image2]);\nprint(image3);\n\n// Create a multi-band image from a list of constants.\nvar multiband = ee.Image([1, 2, 3]);\nprint(multiband);\n\n// Select and (optionally) rename bands.\nvar renamed = multiband.select(\n ['constant', 'constant_1', 'constant_2'], // old names\n ['band1', 'band2', 'band3'] // new names\n);\nprint(renamed);\n\n// Add bands to an image.\nvar image4 = image3.addBands(ee.Image(42));\nprint(image4);\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Create a constant image.\nimage_1 = ee.Image(1)\ndisplay(image_1)\n\n# Concatenate two images into one multi-band image.\nimage_2 = ee.Image(2)\nimage_3 = ee.Image.cat([image_1, image_2])\ndisplay(image_3)\n\n# Create a multi-band image from a list of constants.\nmultiband = ee.Image([1, 2, 3])\ndisplay(multiband)\n\n# Select and (optionally) rename bands.\nrenamed = multiband.select(\n ['constant', 'constant_1', 'constant_2'], # old names\n ['band1', 'band2', 'band3'], # new names\n)\ndisplay(renamed)\n\n# Add bands to an image.\nimage_4 = image_3.addBands(ee.Image(42))\ndisplay(image_4)\n```"]]