公告:凡是在
2025 年 4 月 15 日前註冊使用 Earth Engine 的非商業專案,都必須
驗證非商業用途資格,才能繼續存取 Earth Engine。
圖片總覽
透過集合功能整理內容
你可以依據偏好儲存及分類內容。
如開始使用文件所述,Earth Engine 會將光柵資料表示為 Image
物件。影像由一或多個頻帶組成,每個頻帶都有自己的名稱、資料類型、比例、遮罩和投影。每張圖片的中繼資料都會以一組屬性儲存。
ee.Image
建構函式
您可以將 Earth Engine 資產 ID 貼到 ee.Image
建構函式中,藉此載入圖片。您可以在資料目錄中找到圖片 ID。例如,數位高程模型 (NASADEM):
程式碼編輯器 (JavaScript)
var loadedImage = ee.Image('NASA/NASADEM_HGT/001');
Python 設定
請參閱「
Python 環境」頁面,瞭解 Python API 和如何使用 geemap
進行互動式開發。
import ee
import geemap.core as geemap
Colab (Python)
loaded_image = ee.Image('NASA/NASADEM_HGT/001')
請注意,透過程式碼編輯器搜尋工具尋找圖片的效果相同。匯入素材資源時,系統會在 Code Editor 的匯入部分中為您編寫圖片建構程式碼。您也可以使用個人資產 ID 做為 ee.Image
建構函式的引數。
從 ee.ImageCollection
取得 ee.Image
從集合中取得圖片的標準做法是篩選集合,並依特異性遞減順序排列篩選器。例如,如要從 Sentinel-2 地表反射率集合中取得圖像:
程式碼編輯器 (JavaScript)
var first = ee.ImageCollection('COPERNICUS/S2_SR')
.filterBounds(ee.Geometry.Point(-70.48, 43.3631))
.filterDate('2019-01-01', '2019-12-31')
.sort('CLOUDY_PIXEL_PERCENTAGE')
.first();
Map.centerObject(first, 11);
Map.addLayer(first, {bands: ['B4', 'B3', 'B2'], min: 0, max: 2000}, 'first');
Python 設定
請參閱「
Python 環境」頁面,瞭解 Python API 和如何使用 geemap
進行互動式開發。
import ee
import geemap.core as geemap
Colab (Python)
first = (
ee.ImageCollection('COPERNICUS/S2_SR')
.filterBounds(ee.Geometry.Point(-70.48, 43.3631))
.filterDate('2019-01-01', '2019-12-31')
.sort('CLOUDY_PIXEL_PERCENTAGE')
.first()
)
# Define a map centered on southern Maine.
m = geemap.Map(center=[43.7516, -70.8155], zoom=11)
# Add the image layer to the map and display it.
m.add_layer(
first, {'bands': ['B4', 'B3', 'B2'], 'min': 0, 'max': 2000}, 'first'
)
display(m)
請注意,排序會在篩選條件「後方」執行。避免排序整個珍藏內容。
來自 Cloud GeoTIFF 的圖片
您可以使用 ee.Image.loadGeoTIFF()
從 Google Cloud Storage 中的 Cloud Optimized GeoTIFF 載入圖片。舉例來說,在 Google Cloud 託管的 公開 Landsat 資料集包含 這個 GeoTIFF,對應 Landsat 8 場景的頻帶 5。您可以使用 ee.Image.loadGeoTIFF()
從 Cloud Storage 載入這張圖片:
程式碼編輯器 (JavaScript)
var uri = 'gs://gcp-public-data-landsat/LC08/01/001/002/' +
'LC08_L1GT_001002_20160817_20170322_01_T2/' +
'LC08_L1GT_001002_20160817_20170322_01_T2_B5.TIF';
var cloudImage = ee.Image.loadGeoTIFF(uri);
print(cloudImage);
Python 設定
請參閱「
Python 環境」頁面,瞭解 Python API 和如何使用 geemap
進行互動式開發。
import ee
import geemap.core as geemap
Colab (Python)
uri = (
'gs://gcp-public-data-landsat/LC08/01/001/002/'
+ 'LC08_L1GT_001002_20160817_20170322_01_T2/'
+ 'LC08_L1GT_001002_20160817_20170322_01_T2_B5.TIF'
)
cloud_image = ee.Image.loadGeoTIFF(uri)
display(cloud_image)
請注意,如果您想重新載入從 Earth Engine 匯出至 Cloud Storage的 Cloud 最佳化 GeoTIFF,請在匯出時將 cloudOptimized
設為 true,如這裡所述。
來自 Zarr v2 陣列的圖片
您可以使用 ee.Image.loadZarrV2Array()
從 Google Cloud Storage 中的 Zarr v2 陣列載入圖片。舉例來說,Google Cloud 託管的公開 ERA5 資料集包含 這個 Zarr v2 陣列,對應地球表面蒸發的水量公尺。您可以使用 ee.Image.loadZarrV2Array()
從 Cloud Storage 載入這個陣列:
程式碼編輯器 (JavaScript)
var timeStart = 1000000;
var timeEnd = 1000010;
var zarrV2ArrayImage = ee.Image.loadZarrV2Array({
uri:
'gs://gcp-public-data-arco-era5/ar/full_37-1h-0p25deg-chunk-1.zarr-v3/evaporation/.zarray',
proj: 'EPSG:4326',
starts: [timeStart],
ends: [timeEnd]
});
print(zarrV2ArrayImage);
Map.addLayer(zarrV2ArrayImage, {min: -0.0001, max: 0.00005}, 'Evaporation');
Python 設定
請參閱「
Python 環境」頁面,瞭解 Python API 和如何使用 geemap
進行互動式開發。
import ee
import geemap.core as geemap
Colab (Python)
time_start = 1000000
time_end = 1000010
zarr_v2_array_image = ee.Image.loadZarrV2Array(
uri='gs://gcp-public-data-arco-era5/ar/full_37-1h-0p25deg-chunk-1.zarr-v3/evaporation/.zarray',
proj='EPSG:4326',
starts=[time_start],
ends=[time_end],
)
display(zarr_v2_array_image)
m.add_layer(
zarr_v2_array_image, {'min': -0.0001, 'max': 0.00005}, 'Evaporation'
)
m
常數圖片
除了依 ID 載入圖片,您也可以使用常數、清單或其他合適的 Earth Engine 物件建立圖片。以下是建立圖片、取得頻帶子集和操作頻帶的方法:
程式碼編輯器 (JavaScript)
// Create a constant image.
var image1 = ee.Image(1);
print(image1);
// Concatenate two images into one multi-band image.
var image2 = ee.Image(2);
var image3 = ee.Image.cat([image1, image2]);
print(image3);
// Create a multi-band image from a list of constants.
var multiband = ee.Image([1, 2, 3]);
print(multiband);
// Select and (optionally) rename bands.
var renamed = multiband.select(
['constant', 'constant_1', 'constant_2'], // old names
['band1', 'band2', 'band3'] // new names
);
print(renamed);
// Add bands to an image.
var image4 = image3.addBands(ee.Image(42));
print(image4);
Python 設定
請參閱「
Python 環境」頁面,瞭解 Python API 和如何使用 geemap
進行互動式開發。
import ee
import geemap.core as geemap
Colab (Python)
# Create a constant image.
image_1 = ee.Image(1)
display(image_1)
# Concatenate two images into one multi-band image.
image_2 = ee.Image(2)
image_3 = ee.Image.cat([image_1, image_2])
display(image_3)
# Create a multi-band image from a list of constants.
multiband = ee.Image([1, 2, 3])
display(multiband)
# Select and (optionally) rename bands.
renamed = multiband.select(
['constant', 'constant_1', 'constant_2'], # old names
['band1', 'band2', 'band3'], # new names
)
display(renamed)
# Add bands to an image.
image_4 = image_3.addBands(ee.Image(42))
display(image_4)
除非另有註明,否則本頁面中的內容是採用創用 CC 姓名標示 4.0 授權,程式碼範例則為阿帕契 2.0 授權。詳情請參閱《Google Developers 網站政策》。Java 是 Oracle 和/或其關聯企業的註冊商標。
上次更新時間:2025-07-25 (世界標準時間)。
[null,null,["上次更新時間:2025-07-25 (世界標準時間)。"],[[["\u003cp\u003eIn Earth Engine, raster data is represented as \u003ccode\u003eImage\u003c/code\u003e objects, which can be created by loading existing assets or by defining them with constant values.\u003c/p\u003e\n"],["\u003cp\u003e\u003ccode\u003eImage\u003c/code\u003e objects can be created from Earth Engine assets, \u003ccode\u003eImageCollection\u003c/code\u003e objects, and Cloud Optimized GeoTIFFs (COG) stored in Google Cloud Storage.\u003c/p\u003e\n"],["\u003cp\u003eImages in Earth Engine are composed of bands, each with its own data type, scale, mask, and projection, and images can be manipulated using methods such as \u003ccode\u003eselect\u003c/code\u003e, \u003ccode\u003eaddBands\u003c/code\u003e, and \u003ccode\u003ecat\u003c/code\u003e.\u003c/p\u003e\n"],["\u003cp\u003e\u003ccode\u003eImageCollection\u003c/code\u003e objects can be filtered and sorted to retrieve specific images, and \u003ccode\u003eee.Image.loadGeoTIFF()\u003c/code\u003e is used to load images from Cloud Optimized GeoTIFFs in Cloud Storage.\u003c/p\u003e\n"],["\u003cp\u003eConstant images can be created from numerical values, lists of values, and other suitable Earth Engine objects, allowing for flexible image manipulation and analysis.\u003c/p\u003e\n"]]],[],null,["# Image Overview\n\n|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|\n| [Run in Google Colab](https://colab.research.google.com/github/google/earthengine-community/blob/master/guides/linked/generated/image_overview.ipynb) | [View source on GitHub](https://github.com/google/earthengine-community/blob/master/guides/linked/generated/image_overview.ipynb) |\n\nAs mentioned in the [Get Started](/earth-engine/guides/getstarted#earth-engine-data-structures)\ndoc, raster data are represented as `Image` objects in Earth Engine. Images are\ncomposed of one or more bands and each band has its own name, data type, scale, mask\nand projection. Each image has metadata stored as a set of properties.\n\n`ee.Image` constructor\n----------------------\n\nImages can be loaded by pasting an Earth Engine asset ID into the `ee.Image`\nconstructor. You can find image IDs in the [data catalog](/earth-engine/datasets).\nFor example, to a digial elevation model ([NASADEM](/earth-engine/datasets/catalog/NASA_NASADEM_HGT_001)):\n\n### Code Editor (JavaScript)\n\n```javascript\nvar loadedImage = ee.Image('NASA/NASADEM_HGT/001');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\nloaded_image = ee.Image('NASA/NASADEM_HGT/001')\n```\n\n\nNote that finding an image through\n[the Code Editor search tool](/earth-engine/guides/playground#search-tool)\nis equivalent. When you import the asset, the image construction code is written\nfor you in the [imports section of the\nCode Editor](/earth-engine/guides/playground#imports). You can also use a personal\n[asset ID](/earth-engine/guides/manage_assets#asset_id) as the argument to the\n`ee.Image` constructor.\n\nGet an `ee.Image` from an `ee.ImageCollection`\n----------------------------------------------\n\n\nThe standard way to get an image out of a collection is to filter the collection, with\nfilters in order of decreasing specificity. For example, to get an image out of the\n[Sentinel-2 surface reflectance collection](/earth-engine/datasets/catalog/COPERNICUS_S2_SR):\n\n### Code Editor (JavaScript)\n\n```javascript\nvar first = ee.ImageCollection('COPERNICUS/S2_SR')\n .filterBounds(ee.Geometry.Point(-70.48, 43.3631))\n .filterDate('2019-01-01', '2019-12-31')\n .sort('CLOUDY_PIXEL_PERCENTAGE')\n .first();\nMap.centerObject(first, 11);\nMap.addLayer(first, {bands: ['B4', 'B3', 'B2'], min: 0, max: 2000}, 'first');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\nfirst = (\n ee.ImageCollection('COPERNICUS/S2_SR')\n .filterBounds(ee.Geometry.Point(-70.48, 43.3631))\n .filterDate('2019-01-01', '2019-12-31')\n .sort('CLOUDY_PIXEL_PERCENTAGE')\n .first()\n)\n\n# Define a map centered on southern Maine.\nm = geemap.Map(center=[43.7516, -70.8155], zoom=11)\n\n# Add the image layer to the map and display it.\nm.add_layer(\n first, {'bands': ['B4', 'B3', 'B2'], 'min': 0, 'max': 2000}, 'first'\n)\ndisplay(m)\n```\n\n\nNote that the sort is *after* the filters. Avoid sorting the entire collection.\n\nImages from Cloud GeoTIFFs\n--------------------------\n\n\nYou can use `ee.Image.loadGeoTIFF()` to load images from\n[Cloud Optimized\nGeoTIFFs](https://github.com/cogeotiff/cog-spec/blob/master/spec.md) in [Google Cloud Storage](https://cloud.google.com/storage).\nFor example, the\n[public\nLandsat dataset](https://console.cloud.google.com/marketplace/details/usgs-public-data/landast) hosted in Google Cloud contains\n[this\nGeoTIFF](https://console.cloud.google.com/storage/browser/_details/gcp-public-data-landsat/LC08/01/001/002/LC08_L1GT_001002_20160817_20170322_01_T2/LC08_L1GT_001002_20160817_20170322_01_T2_B5.TIF), corresponding to band 5 from a Landsat 8 scene. You can load this image from\nCloud Storage using `ee.Image.loadGeoTIFF()`:\n\n### Code Editor (JavaScript)\n\n```javascript\nvar uri = 'gs://gcp-public-data-landsat/LC08/01/001/002/' +\n 'LC08_L1GT_001002_20160817_20170322_01_T2/' +\n 'LC08_L1GT_001002_20160817_20170322_01_T2_B5.TIF';\nvar cloudImage = ee.Image.loadGeoTIFF(uri);\nprint(cloudImage);\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\nuri = (\n 'gs://gcp-public-data-landsat/LC08/01/001/002/'\n + 'LC08_L1GT_001002_20160817_20170322_01_T2/'\n + 'LC08_L1GT_001002_20160817_20170322_01_T2_B5.TIF'\n)\ncloud_image = ee.Image.loadGeoTIFF(uri)\ndisplay(cloud_image)\n```\n\n\nNote that if you want to reload a Cloud Optimized GeoTIFF that you\n[export from Earth Engine to\nCloud Storage](/earth-engine/guides/exporting#to-cloud-storage), when you do the export, set\n`cloudOptimized` to **true** as\ndescribed [here](/earth-engine/guides/exporting#configuration-parameters).\n\nImages from Zarr v2 arrays\n--------------------------\n\n\nYou can use `ee.Image.loadZarrV2Array()` to load an image from a\n[Zarr v2 array](https://zarr-specs.readthedocs.io/en/latest/v2/v2.0.html) in\n[Google Cloud Storage](https://cloud.google.com/storage). For example, the public\nERA5 dataset hosted in Google Cloud contains\n[this Zarr v2 array](https://console.cloud.google.com/storage/browser/_details/gcp-public-data-arco-era5/ar/full_37-1h-0p25deg-chunk-1.zarr-v3/evaporation/.zarray),\ncorresponding to meters of water that has evaporated from the Earth's surface. You can load\nthis array from Cloud Storage using `ee.Image.loadZarrV2Array()`:\n\n### Code Editor (JavaScript)\n\n```javascript\nvar timeStart = 1000000;\nvar timeEnd = 1000010;\nvar zarrV2ArrayImage = ee.Image.loadZarrV2Array({\n uri:\n 'gs://gcp-public-data-arco-era5/ar/full_37-1h-0p25deg-chunk-1.zarr-v3/evaporation/.zarray',\n proj: 'EPSG:4326',\n starts: [timeStart],\n ends: [timeEnd]\n});\nprint(zarrV2ArrayImage);\nMap.addLayer(zarrV2ArrayImage, {min: -0.0001, max: 0.00005}, 'Evaporation');\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\ntime_start = 1000000\ntime_end = 1000010\nzarr_v2_array_image = ee.Image.loadZarrV2Array(\n uri='gs://gcp-public-data-arco-era5/ar/full_37-1h-0p25deg-chunk-1.zarr-v3/evaporation/.zarray',\n proj='EPSG:4326',\n starts=[time_start],\n ends=[time_end],\n)\n\ndisplay(zarr_v2_array_image)\n\nm.add_layer(\n zarr_v2_array_image, {'min': -0.0001, 'max': 0.00005}, 'Evaporation'\n)\nm\n```\n\nConstant images\n---------------\n\nIn addition to loading images by ID, you can also create images\nfrom constants, lists or other suitable Earth Engine objects. The following illustrates\nmethods for creating images, getting band subsets, and manipulating bands:\n\n### Code Editor (JavaScript)\n\n```javascript\n// Create a constant image.\nvar image1 = ee.Image(1);\nprint(image1);\n\n// Concatenate two images into one multi-band image.\nvar image2 = ee.Image(2);\nvar image3 = ee.Image.cat([image1, image2]);\nprint(image3);\n\n// Create a multi-band image from a list of constants.\nvar multiband = ee.Image([1, 2, 3]);\nprint(multiband);\n\n// Select and (optionally) rename bands.\nvar renamed = multiband.select(\n ['constant', 'constant_1', 'constant_2'], // old names\n ['band1', 'band2', 'band3'] // new names\n);\nprint(renamed);\n\n// Add bands to an image.\nvar image4 = image3.addBands(ee.Image(42));\nprint(image4);\n```\nPython setup\n\nSee the [Python Environment](/earth-engine/guides/python_install) page for information on the Python API and using\n`geemap` for interactive development. \n\n```python\nimport ee\nimport geemap.core as geemap\n```\n\n### Colab (Python)\n\n```python\n# Create a constant image.\nimage_1 = ee.Image(1)\ndisplay(image_1)\n\n# Concatenate two images into one multi-band image.\nimage_2 = ee.Image(2)\nimage_3 = ee.Image.cat([image_1, image_2])\ndisplay(image_3)\n\n# Create a multi-band image from a list of constants.\nmultiband = ee.Image([1, 2, 3])\ndisplay(multiband)\n\n# Select and (optionally) rename bands.\nrenamed = multiband.select(\n ['constant', 'constant_1', 'constant_2'], # old names\n ['band1', 'band2', 'band3'], # new names\n)\ndisplay(renamed)\n\n# Add bands to an image.\nimage_4 = image_3.addBands(ee.Image(42))\ndisplay(image_4)\n```"]]