Pengumuman: Semua project nonkomersial yang terdaftar untuk menggunakan Earth Engine sebelum 15 April 2025 harus memverifikasi kelayakan nonkomersial untuk mempertahankan akses Earth Engine.
Tetap teratur dengan koleksi
Simpan dan kategorikan konten berdasarkan preferensi Anda.
Interpolasi dari vektor ke raster di Earth Engine akan membuat Image dari FeatureCollection. Secara khusus, Earth Engine menggunakan data numerik yang disimpan di properti fitur untuk melakukan interpolasi nilai di lokasi baru di luar fitur. Interpolasi menghasilkan Image berkelanjutan dari
nilai yang diinterpolasi hingga jarak yang ditentukan.
Interpolasi Berbobot Jarak Invers
Fungsi inverse distance weighting (IDW) di Earth Engine didasarkan pada metode yang dijelaskan oleh Basso et al. (1999). Parameter kontrol tambahan ditambahkan dalam bentuk
faktor peluruhan (gamma) pada jarak terbalik. Parameter lainnya mencakup
rata-rata dan simpangan baku properti yang akan diinterpolasi dan jarak rentang maksimum
yang akan diinterpolasi. Contoh berikut membuat permukaan interpolasi dari
konsentrasi metana untuk mengisi celah spasial dalam set data raster asli. FeatureCollection
dihasilkan dengan mengambil sampel komposit metana selama dua minggu.
Perhatikan bahwa, seperti yang ditentukan oleh parameter range, interpolasi hanya
ada hingga 70 kilometer dari stasiun pengukuran terdekat.
Kriging
Kriging adalah metode interpolasi
yang menggunakan estimasi semi-varian yang dimodelkan untuk membuat gambar
nilai interpolasi yang merupakan kombinasi optimal dari nilai di lokasi yang diketahui.
Estimator Kriging memerlukan parameter yang menjelaskan bentuk
semi-variogram yang sesuai dengan titik data
yang diketahui. Parameter ini diilustrasikan oleh Gambar 1.
Gambar 1. Parameter nugget, sill, dan range
diilustrasikan pada fungsi variogram yang diidealkan.
Contoh berikut mengambil sampel gambar suhu permukaan laut (SST) di lokasi acak, lalu melakukan interpolasi SST dari sampel menggunakan Kriging:
Ukuran lingkungan tempat melakukan interpolasi ditentukan oleh parameter maxDistance. Ukuran yang lebih besar akan menghasilkan output yang lebih lancar, tetapi
komputasi yang lebih lambat.
[null,null,["Terakhir diperbarui pada 2025-07-25 UTC."],[[["\u003cp\u003eEarth Engine interpolates numeric data from vector features to create continuous raster images.\u003c/p\u003e\n"],["\u003cp\u003eInverse Distance Weighting (IDW) interpolation estimates values based on the distance and decay factor from known data points.\u003c/p\u003e\n"],["\u003cp\u003eKriging utilizes a semi-variogram model to produce an optimal interpolation based on spatial relationships of known values.\u003c/p\u003e\n"],["\u003cp\u003eBoth methods offer customizable parameters to control the interpolation process, like range, maximum distance, and model-specific settings.\u003c/p\u003e\n"]]],["Earth Engine interpolates numeric data from a `FeatureCollection` to create a continuous `Image`. Inverse Distance Weighted (IDW) interpolation uses a decay factor (`gamma`) and distance parameters to estimate values, demonstrated by interpolating methane concentration data. Kriging interpolation, another method, uses semi-variance estimates (`nugget`, `sill`, `range`) to generate interpolated values, exemplified through sea surface temperature interpolation. Both methods sample raster data to create `FeatureCollections` for interpolation. The `maxDistance` parameter determines the interpolation neighborhood's size in Kriging.\n"],null,["# Vector to Raster Interpolation\n\nInterpolation from vector to raster in Earth Engine creates an `Image`\nfrom a `FeatureCollection`. Specifically, Earth Engine uses numeric data\nstored in a property of the features to interpolate values at new locations outside\nof the features. The interpolation results in a continuous `Image` of\ninterpolated values up to the distance specified.\n\nInverse Distance Weighted Interpolation\n---------------------------------------\n\nThe inverse distance weighting (IDW) function in Earth Engine is based on the method\ndescribed by\n[Basso\net al. (1999)](https://ieeexplore.ieee.org/abstract/document/805606). An additional control parameter is added in the form of a\ndecay factor (`gamma`) on the inverse distance. Other parameters include the\nmean and standard deviation of the property to interpolate and the maximum range\ndistance over which to interpolate. The following example creates an interpolated surface of\n[methane concentration](https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S5P_OFFL_L3_CH4) to fill spatial gaps in the original raster dataset. The\n`FeatureCollection` is generated by sampling a two-week methane composite. \n\n```gdscript\n// Import two weeks of S5P methane and composite by mean.\nvar ch4 = ee.ImageCollection('COPERNICUS/S5P/OFFL/L3_CH4')\n .select('CH4_column_volume_mixing_ratio_dry_air')\n .filterDate('2019-08-01', '2019-08-15')\n .mean()\n .rename('ch4');\n\n// Define an area to perform interpolation over.\nvar aoi =\n ee.Geometry.Polygon(\n [[[-95.68487605978851, 43.09844605027055],\n [-95.68487605978851, 37.39358590079781],\n [-87.96148738791351, 37.39358590079781],\n [-87.96148738791351, 43.09844605027055]]], null, false);\n\n// Sample the methane composite to generate a FeatureCollection.\nvar samples = ch4.addBands(ee.Image.pixelLonLat())\n .sample({region: aoi, numPixels: 1500,\n scale:1000, projection: 'EPSG:4326'})\n .map(function(sample) {\n var lat = sample.get('latitude');\n var lon = sample.get('longitude');\n var ch4 = sample.get('ch4');\n return ee.Feature(ee.Geometry.Point([lon, lat]), {ch4: ch4});\n });\n\n// Combine mean and standard deviation reducers for efficiency.\nvar combinedReducer = ee.Reducer.mean().combine({\n reducer2: ee.Reducer.stdDev(),\n sharedInputs: true});\n\n// Estimate global mean and standard deviation from the points.\nvar stats = samples.reduceColumns({\n reducer: combinedReducer,\n selectors: ['ch4']});\n\n// Do the interpolation, valid to 70 kilometers.\nvar interpolated = samples.inverseDistance({\n range: 7e4,\n propertyName: 'ch4',\n mean: stats.get('mean'),\n stdDev: stats.get('stdDev'),\n gamma: 0.3});\n\n// Define visualization arguments.\nvar band_viz = {\n min: 1800,\n max: 1900,\n palette: ['0D0887', '5B02A3', '9A179B', 'CB4678',\n 'EB7852', 'FBB32F', 'F0F921']};\n\n// Display to map.\nMap.centerObject(aoi, 7);\nMap.addLayer(ch4, band_viz, 'CH4');\nMap.addLayer(interpolated, band_viz, 'CH4 Interpolated');\n```\n\nNote that, as specified by the `range` parameter, the interpolation only\nexists up to 70 kilometers from the nearest measurement station.\n\nKriging\n-------\n\n[Kriging](https://en.wikipedia.org/wiki/Kriging) is an interpolation method\nthat uses a modeled estimate of\n[semi-variance](https://en.wikipedia.org/wiki/Semivariance) to create an image\nof interpolated values that is an optimal combination of the values at known locations.\nThe Kriging estimator requires parameters that describe the shape of a\n[semi-variogram](https://en.wikipedia.org/wiki/Variogram) fit to the known data\npoints. These parameters are illustrated by Figure 1.\nFigure 1. The `nugget`, `sill` and `range` parameters illustrated on a idealized variogram function.\n\nThe following example samples a sea surface temperature (SST) image at random locations,\nthen interpolates SST from the sample using Kriging: \n\n```cplint\n// Load an image of sea surface temperature (SST).\nvar sst = ee.Image('NOAA/AVHRR_Pathfinder_V52_L3/20120802025048')\n .select('sea_surface_temperature')\n .rename('sst')\n .divide(100);\n\n// Define a geometry in which to sample points\nvar geometry = ee.Geometry.Rectangle([-65.60, 31.75, -52.18, 43.12]);\n\n// Sample the SST image at 1000 random locations.\nvar samples = sst.addBands(ee.Image.pixelLonLat())\n .sample({region: geometry, numPixels: 1000})\n .map(function(sample) {\n var lat = sample.get('latitude');\n var lon = sample.get('longitude');\n var sst = sample.get('sst');\n return ee.Feature(ee.Geometry.Point([lon, lat]), {sst: sst});\n });\n\n// Interpolate SST from the sampled points.\nvar interpolated = samples.kriging({\n propertyName: 'sst',\n shape: 'exponential',\n range: 100 * 1000,\n sill: 1.0,\n nugget: 0.1,\n maxDistance: 100 * 1000,\n reducer: 'mean',\n});\n\nvar colors = ['00007F', '0000FF', '0074FF',\n '0DFFEA', '8CFF41', 'FFDD00',\n 'FF3700', 'C30000', '790000'];\nvar vis = {min:-3, max:40, palette: colors};\n\nMap.setCenter(-60.029, 36.457, 5);\nMap.addLayer(interpolated, vis, 'Interpolated');\nMap.addLayer(sst, vis, 'Raw SST');\nMap.addLayer(samples, {}, 'Samples', false);\n```\n\nThe size of the neighborhood in which to perform the interpolation is specified by the\n`maxDistance` parameter. Larger sizes will result in smoother output but\nslower computations."]]